金属製乾式キャスクバスケット用 アルミニウム合金における材料評価手法に関する 確性試験報告書

L5-95HQ020 Rev.0

2017年2月

一般財団法人 発電設備技術検査協会

この報告書は、金属製乾式キャスクバスケット用アルミニウム合金における材 料評価手法に関する確性試験委員会(以下、委員会という)の検討及び審議の 結果をまとめたものです。 この報告書の著作権は、依頼者である三菱重工業株式会社 原子力事業部が有し

ています。

我が国では、原子力発電施設で使用された燃料を再処理し、プルトニウム等を回収して有効利用する 核燃料サイクルを推進することを基本方針としている。このため、再処理までの過程において、原子力 発電所の運転に伴って発生した使用済燃料は、使用済燃料プールで一定程度まで冷却され、その後、キ ャスクと呼ばれる容器に格納し一時保管される。

キャスクには金属製やコンクリート製のものが存在するが、本確性試験で対象としたキャスクは金属 製乾式キャスク(以下、DCSという)である。これは、使用済燃料プールにおける使用済燃料の保管の 代替として、1970年代後半から1980年代前半にかけてその使用が検討され、米国ではNRCの認可を 経て1986年にサリー原子力発電所で最初に導入された。一方、我が国では1990年代に入って法令や技 術基準が整備され、1995年に東京電力福島第一原子力発電所の使用済燃料用貯蔵容器として導入された のが端緒である。

DCSには輸送及び貯蔵の役目を同時に兼ね備えたものがある。このため、輸送中のアクシデントを想定した衝撃や火災等に耐えうる堅固な構造となっていることに加え、貯蔵容器それ自体の基本的安全機能として、放射性物質の閉じ込め、放射線遮蔽、未臨界維持機能及び崩壊熱の除熱機能が必要とされる。このような安全機能は、DCSの構成部材の構造強度により支えられる。使用済燃料はDCS内でバスケットと呼ばれるラックに整置される。バスケットは、構造強度や未臨界機能を維持しつつ除熱機能を向上させるため、熱伝導の良好なアルミニウム合金が適しているが、DCSは特に長期にわたって使用済燃料を格納し保管することが前提であるため、バスケットに必要な機能とその性能が供用期間を通じて維持されることが重要となる。

このような背景の下、三菱重工業株式会社より、金属製乾式キャスクバスケット用アルミニウム合金 について、供用期間中における特性変化を想定した供試材を作製してその特性を評価するとともに、当 該材料を用いた各設計強度の設定方法及び設計値の妥当性を確認するための依頼があった。当協会は、 この依頼を受けて平成27年10月に「金属製乾式キャスクバスケット用アルミニウム合金における材料 評価手法に関する確性試験委員会」を設置し、審議することとした。

具体的には、3000 系及び B₄C を添加した 6000 系アルミニウム合金それぞれについて、最大 60 年の 供用期間中に生じ得る材料特性変化を考慮した強度評価を可能とする供試材の作製方法を見出し、これ を基に作製された材料の強度評価を行うとともに、輸送及び貯蔵時の安全機能を維持するための設計強 度の設定方法と得られた設計強度の妥当性について委員会で審議した。その結果、本確性試験で検討し た条件において得られた結果が技術的に妥当であり、かつ、保守的であると結論付けた。本確性試験で 得られた成果が、今後のキャスク開発や製造、運用に適切に用いられるとともに、キャスクの安全性に 寄与するものであることを期待したい。

最後に、本報告書を作成するに当たり、委員会での審議検討を始め、種々の活動にご協力いただいた 本委員会の委員並びに関係各位に対し、深甚な謝意を表する。

平成 29 年 2 月

一般財団法人 発電設備技術検査協会 金属製乾式キャスクバスケット用アルミニウム合金における 材料評価手法に関する確性試験委員会

委員長 三枝 利有

金属製乾式キャスクバスケット用

アルミニウム合金における材料評価手法に関する

確性試験委員会

委員 名簿(順不同、敬称略)

- 1. 委員長及び委員
 - 委員長 三枝 利有

一般財団法人 電力中央研究所 研究アドバイザー

委 員 高山 善匡

国立大学法人宇都宮大学 大学院工学研究部 循環生産研究部門 機械知能工学専攻・機械システム工学科担当 教授

辻 裕一

東京電機大学 工学部 機械工学科 教授

丸山 公一

国立大学法人東北大学 大学院 工学研究科 知能デバイス材料学専攻 名誉教授

三浦 博己

国立大学法人豊橋技術科学大学 機械工学系 教授

横山 隆

岡山理科大学 名誉教授

2. オブザーバ

なし

3. 依頼者

三菱重工業株式会社 原子力事業部機器設計部

4. 事務局

一般財団法人 発電設備技術検査協会 規格基準室

金属製乾式キャスクバスケット用 アルミニウム合金における材料評価手法に関する 確性試験委員会

実施実績

開催 回示	日時	場所	主な議題
第1回	2016年1月20日	発電技術	 バスケット用アルミニウム合金材料の使
		検査協会	用環境
			・試験計画
第2回	2016年3月18日	同上	・ 試験計画コメントに対する回答
			・材料強度の設定方法
第3回	2016年6月23日	同上	· 材料試験結果状況
			 報告書案審議
第4回	2016年8月30日	同上	 報告書案審議

目

次

1.確性	試験の目的・背景	1-1
1.1	キャスクの概要	1-4
1.2	キャスク設計の考え方	1-7
2.確性	試験に適用する材料の概要	2-1
2.1	キャスク用バスケット材料	2-1
2.2	バスケット材料の使用環境	2-7
3. 確何	生試験の検討内容	3-1
3.1	供試材の作製方法	3-1
3.2	材料特性評価	3-15
3.3	各設計強度の設定方法	3-17
4. 確	生試験の検討項目	4-1
4.1	供試材の作製方法	4-1
4.2	各設計強度の設定方法	4-1
4.3	設計評価用材料特性データの取得	4-1
5. 確	生試験の検討方法	5-1
5.1	長時間時効材	5-1
5.2	完全焼なまし材	5-2
5.3	各設計強度基準値の確認	5-3
5.4	物性值測定	5-4
5.5	破壊靭性の確認	5-5
6. 確	生試験の実施結果	6-1
6.1	長時間時効材の強度の確認結果	6-1
6.2	完全焼なまし材の強度の確認結果	6-42
6.3	設計許容応力の確認	6-118
6.4	破壊靭性の評価	6-150
6.5	物性值測定	6-175
7. ま	とめ	7-1
8. 結	言	<u>8-1</u>

添付資料1 MB-A3004 材料規定

添付資料 2 BC-A6N01 材料規定

参考資料1 アルミニウム合金の機械的性質に及ぼす中性子照射の影響について

参考資料2 金属製乾式キャスクバスケット用アルミニウム合金における材料 評価手法に関する確性試験委員会審議資料

1. 確性試験の目的・背景

原子力発電所において発生する使用済燃料の貯蔵方式として、輸送・貯蔵兼用の金属 製乾式キャスク(以下、「キャスク」)を用いた乾式貯蔵が注目されている。キャスクは 使用済燃料を装荷してから、所定貯蔵場所までの輸送、貯蔵施設内での貯蔵(最長 60 年間)及び最終的に再処理又は処分を行う所定場所まで輸送することを想定している。 そのキャスクを構成する主要部材としてバスケットがある。当該部材は、使用済燃料

を装荷し保持するため、安全機能要求として、未臨界機能、除熱機能及びそれらを維持 するための構造強度が挙げられる。これら安全要求機能を合理的に達成するために、ア ルミニウム合金又はホウ素添加(B4C添加粉末冶金)アルミニウム合金を用いた設計が ある。これらアルミニウム合金を用いたキャスクバスケット設計の一例を図 1、図 2 に示す。

未臨界機能は、構造的に燃料間隔を維持し必要に応じてバスケットを構成する材料に ホウ素又はホウ素化合物(B4C等)の中性子吸収材を添加することで未臨界機能を維持 するものである。除熱機能は、バスケットを構成する材料の伝熱特性等により、キャス ク外へ使用済燃料の崩壊熱を伝熱し除去するものである。これら未臨界及び除熱の安全 機能を維持するに必要な構造強度を有する必要があり、かつアルミニウム合金材料を用 いる設計の場合、60年間の供用期間における材料特性変化を考慮した設計応力強さ Sm、 設計引張強さ Su、設計降伏点 Sy等の設計強度を用いて設計を行う必要がある。

このように、アルミニウム合金材料の 60 年間の供用期間における組織及び材料特性変 化を把握し、各安全機能を評価するため、従来、供用温度より高い温度で数千から数万 時間の長時間過時効熱処理により供試材を作製し、材料特性を評価する方法が採用され てきた。しかしながら、化学成分などによっては、必ずしも十分な処理となっていない 可能性が確認されている。そのため対象合金において、従来の長時間過時効熱処理の妥 当性あるいはそれに代わる熱処理(完全焼なまし処理)の妥当性を確認し、その処理方 法により処理された供試材により特性評価する必要がある。

本報告書は、アルミニウム合金又はホウ素添加(B4C 添加粉末冶金)アルミニウム合金を対象に、60 年間の供用期間における組織及び材料特性変化を想定した上で適切な強度評価が可能となるように、供試材の作製方法、材料特性評価、各設計強度の設定方法及び各設計強度の設定について本確性試験委員会において、審議・確認した結果についてまとめたものである。

1-1

縦置き状態図(エアパレット(搬送装置)込) 貯蔵状態模式図(a) 実規模キャスクの例

(b) 実規模貯蔵架台の例図 2 アルミニウム合金を用いたキャスクの実施例

1.1 キャスクの概要

キャスクバスケットにおける 60 年間の様態を考慮した、温度と荷重に関する履歴模式 図を図 3 に、輸送時の IAEA 輸送規則等で定められている 9m 落下等の評価様態と試験 実施例を図 4 に示す。また、MSF型キャスクの展開模式図を図 5 に示す。なお、本報 告書において対象としているのは、図 5 に示すバスケット(材料:アルミニウム合金 又はホウ素添加(B4C 添加粉末冶金)アルミニウム合金)である。

図 3 キャスクバスケットの 60 年間の温度と荷重履歴模式図

BWR模擬燃料 (69体)収納 重量: 141 ton、寸法: φ2.4x 5.3m

試験期間: 2004-05年(於ベルリン、スラップダウンはPATRAM2004 放射性物質輸送国際学会にて公開試験)

図 4 輸送時の評価事象模式図と試験写真の例

図 5 MSF型キャスクの模式図

1.2 キャスク設計の考え方

キャスク設計について、設計基準及び適用基準値の考え方を表 1に示す。表 1に示す 供用状態 A から D において、供用状態 A,B は主に許容引張応力 S,設計応力強さ Smを 基準として適用し、供用状態 C,D は設計降伏点 Sy,設計引張強さ Suを基準として適用 する。なお、キャスクの安全機能維持を目的に設計降伏点 Sy を超えないものとし、供 用状態に依らず塑性変形を許容しない設計としている。

表 1 MSF型キャスクバスケット設計に適用する設計基準値

供用	状態	А		В	С	
具体的 な設計	貯蔵	貯蔵時	通常の取扱時	異常着床 架台衝突	弹性設計用地震動 (Sd) 地震時	
事象	輸送	_	通常輸送時	0.3m 落下等	_	
基準値認 基本的な	设定の な考え方	クリープによる変形の進展を防止	短期荷重による表	面塑性を防止	短期荷重による全断面降伏を防止	短期荷重 変形を[
(MSF スク設言 考え方を	 (MSF型キャ スク設計基準の 考え方を含む) 本事象は、長期荷重がバスケットへ作 用する事象である。 バスケットにおいては、クリープ特性 を無視できない温度領域で使用することから、クリープ破断及びクリープ変 形を防止するよう基準を設定する。 ① クリープ破断を防止する制限として、長期荷重により発生する応力を クリープを考慮した設計基準(S値) 以下とする。 ② クリープ変形の制限として、長期荷 重により発生するクリープひずみ を微小ひずみに制限する。 		<説明> 本事象は、通常使) しによる荷重(短 がスケットへ作 る。 本め、オオケット る。 本め、バスケット よう基次応力で設定 し 一分に安全側な る。 2 二次応力(熱応 計限界とする。	 用状態又は繰り返 期繰り返し荷重) 用する事象であ 臨界機能持のの る。 壊応力に対して 設計限界とす (抗しないよう設) 	<説明> 本事象は、設計評価期間中、まれ にしか生じる可能性が無い事象で ある。 本事象に対する未臨界機能維持の ため、バスケット形状が維持され るよう基準を設定する。 ① 一次応力は、降伏点以下又は全 断面降伏にも余裕を要する設 計限界とする。 ② 二次応力(熱応力)発生時にお いて、変形が累積しない設計限 界とする	<本想得本らよすさ持バ設① ② 説事さる事、うるらのス定一らす二が明象れ事象基基基に重ケす次にる次累
設計基 MSF 型	基準値	$P_{m} \leq S$ $P_{m} + P_{b} \leq S$ $\tau \leq 0.6S$ $\sigma_{P} \leq S$ $\sigma_{b}(-\not\chi) \leq f_{c}$ $\sigma_{b}(-\not\chi + - \not\chi) \leq 1.5f_{c}$ $\varepsilon_{mc} \leq 0.002$ $\varepsilon_{mc} + \varepsilon_{bc} \leq 0.004$	$P_{m} \leq S_{m}$ $P_{m} + P_{b} \leq 1.5S_{m}$ $P_{m} + P_{b} + Q \leq 1.5S$ $\tau \leq 0.6S_{m}$ $\sigma_{P} \leq S_{y} (1.5S_{y}) (1, \sigma_{b}(-\not{\chi}) \leq f_{c})$ $\sigma_{b}(-\not{\chi} + \not{-}\not{\chi}) \leq 1$.5f _c	$P_{m} \leq 1.2S_{m}$ $P_{m} + P_{b} \leq 1.8S_{m}$ $P_{m} + P_{b} + Q \leq 1.5S_{m}$ $\tau \leq 0.9S_{m}$ $\sigma_{P} \leq 1.5S_{y} (2.25S_{y})^{-(1)}$ $\sigma_{b}(-\not \chi) \leq 1.5f_{c}$ $\sigma_{b}(-\not \chi + - \not \chi) \leq 1.5f_{c}$	$P_{m} \leq 2/2$ $P_{m} + Pb$ $P_{m} + Pb$ $\tau \leq 1.2S$ $\sigma_{P} \leq 2S_{y}$ $\sigma_{b} (-\not T)$ $\sigma_{b} (-\not T)$
2	Ē				$P_m + P_b \leq S_y \divideontimes$	$P_m + P_b$

Sm:設計応力強さ、Su:設計引張強さ、Sy:設計降伏点、S:許容引張応力

 $P_m: -次 - 般膜応力、 Pb: -次曲げ応力、 Q: 二次応力、 <math>\tau$: 平均せん断応力、 σ_P : 平均支圧応力、 σ_b : 座屈応力、 f_c : 許容圧縮応力 (S_y又はS_uの関数)、 $\varepsilon_m c$: 長期荷重によるクリープ膜ひずみ、 $\varepsilon_b c$: 長期荷重によるクリープ曲げひずみ

(注 1):()内は支圧荷重の作用端から自由端までの距離が支圧荷重の作用幅より大きい場合の値。

※: MSF型キャスクでは、供用状態C及びDにおいて未臨界機能の維持を保証するため設計降伏点 Syを適用。

(注意)本規定は、一般社団法人日本機械学会 JSME S FA1-2007 使用済燃料貯蔵施設規格金属キャスク構造規格(2007 年版)の基準を準拠しつつ、MSF 型キャスク特別規定を設けたものである。 なお、MSF 型キャスクとは、三菱重工業㈱が設計する輸送・貯蔵兼用金属製キャスクを示す。

D

基準地震動 (Ss) 地震時

9m 落下等

重による安全機能に影響を及ぼす塑性 防止

は、設計評価期間中には発生するとは予 ないが、技術的に見れば発生が想定され 象である。 では、一般公衆の放射線被ばくの観点か 的安全機能を著しく損なうことが無い 準を設定するとの観点から、破断を防止 準を設定する。 バスケットについては、未臨界機能維 要性を考慮して、保守的に 9m 落下時に ットの塑性変形を防止する基準を追加 5. 応力は、設計引張応力以下とする。さ 、保守的に一次応力は降伏応力以下と 応力(熱応力)発生時において、変形 積しない設計限界とする $3S_u$ $\leq S_u$ $+Q \leq 3S_m$ b_m $(3S_v)^{(1)}$ $) \leq 1.5 f_c$ $+ \exists x \leq 1.5 f_c$

 $\overset{}{\gg} \leq S_y \overset{}{\gg}$

2. 確性試験に適用する材料の概要

本項では、国内の原子力発電所により発生した使用済燃料輸送・貯蔵用キャスクのバ スケット材料に採用されるアルミニウム合金材料及びホウ素添加(B4C添加粉末冶金) アルミニウム合金の概要と使用環境を示す。

2.1 キャスク用バスケット材料

本確性試験に供するキャスク用バスケット材料は JIS 規格に規定されるアルミニウム合金 A3004-H112(以下、「MB-A3004」)及び JIS 規定に準拠し粉末冶金熱間押出 にて製造するホウ素(B₄C)添加アルミニウム合金 BC-A6N01-T1(以下、「BC-A6N01」) の2材料を対象とする。

なお、連続で押出製造される押出材の先頭部、中央部、尾部での引張特性確認を実施 した結果、試験片の採取位置によって引張特性に有意な差がなく、供試材の採取位置 と引張試験片の代表性に問題ないことを確認した(参考資料2参照)。

(1) MB-A3004

本材料は JIS 規格(JIS H4100 に準拠)に基づき図 6 に示すプロセスにより製造された A3004-H112 材である。

図 6 MB-A3004 材の製造プロセス

本材料は非熱処理型の 3000 系合金と呼ばれる Al-Mn 系合金にあって、Mg も 1mass%程度添加して、加工性、耐食性を維持しつつ、構造強度を改善した材料で ある。合金種別を示す 3004 の後の H112 は、JIS H 0001:1998 による質別記号で あり、積極的な加工硬化を加えずに、製造されたままの状態で機械的性質の保証 されたものであることを示す。供試材のチャージ及び成分一覧を表 2 と表 3 に、 押出成形品の断面形状を図 7 に示す。

供試材										
	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Al	備考
規格値	\leq	\leq	≦ 0.25	1	0.8	_	≦ 0.25	_	残部	
A3004	0.5	0.7	0.25	1.5	1.5		0.20			百中間、四中分数を加
А	0.19	0.6	0.16	1.1	1.0	—	0.06	—	残部	長時间 週時 効熱処理 完全焼なまし処理
В	0.18	0.6	0.18	1.1	1.0	0.02	0.04	0.02	残部	長時間過時効熱処理 完全焼なまし処理
С	0.2	0.5	0.19	1.1	1.0	0.01	0.05	0.02	残部	長時間過時効熱処理 完全焼なまし処理

表 2 MB-A3004の供試材の成分

表 3 A3004 機械的性質(JIS 参考值)

	引張試験					
	引張強さ	耐力	伸び			
	(MPa)	(MPa)	(%)			
A3004P-O(板厚 1.3~3.0mm) (JIS H4000)	155 以上 195 以下	60 以上	18 以上			
A3004P-H12(板厚 1.3~3.0mm) (JIS H4000)	195 以上 245 以下	145 以上	5 以上			

(1) 供試材 A の押出材断面形状

(2) 供試材 B 及び C の押出材断面形状

図 7 MB-A3004 押出成形断面形状図

(2) BC-A6N01

本材料は図8に示すプロセスにより製造されたホウ素添加(B₄C 添加粉末冶金) アルミニウム合金である。本材料は押出成形に適した熱処理型の6000系合金 (Al-Mg-Si 系合金)のうち A6N01 をベースとして B₄C 粉末を均一に含ませた粉末 冶金材料である。

本材料は、ガスアトマイズ法により粉体化した A6N01 と B4C 粉末を所定割合に て混合・充填し、冷間等方圧加圧法(CIP)による予備成形後、真空焼結による熱 間押出成形前駆体であるビレットを作製後、熱間押出による B4C 入り A6N01 材

(粉末冶金材)の成形により製造される。なお、熱間押出後の熱処理は行わず、 熱間押出中の冷却を自然放冷し、積極的な時効硬化(人工時効処理)をさせない 自然時効である質別(JIS H 0001における T1)である。

図 8 BC-A6N01 製造プロセス

供試材のチャージ及び成分分析を表4に、押出成形品の断面形状を図9に示す。

供試材	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Al	B_4C	備考
規格値 A6N01	$0.4 \\ \sim 0.9$	≤ 0.35	≤ 0.35	≤ 0.50	$0.4 \\ \sim 0.8$	≤ 0.30	≤ 0.25	≦ 0.10	残部	_	
А	0.8	0.09	0.01	0.03	0.5	≦0.01	≦0.01	\leq 0.01	残部	2.5	ASME Code Case N673 用データ
В	0.6	0.06	0.01	0.03	0.5	≦0.01	≦0.01	\leq 0.01	残部	2.5	ASME Code Case N673 用データ
С	0.6	0.10	0.01	0.03	0.4	≦0.01	≦0.01	\leq 0.01	残部	2.5	ASME Code Case N673 用データ
D	0.7	0.10	0.01	0.03	0.5	≦0.01	≦0.01	\leq 0.01	残部	3.0	ASME Code Case N673 用データ
Е	0.6	0.09	0.01	0.03	0.5	≦0.01	≦0.01	\leq 0.01	残部	3.0	ASME Code Case N673 用データ
F	0.5	0.09	0.01	0.03	0.4	≦0.01	≦0.01	\leq 0.01	残部	3.0	ASME Code Case N673 用データ
G	0.8	0.13	0.01	0.03	0.6	≦0.01	≦0.01	\leq 0.01	残部	3.5	ASME Code Case N673 用データ
Н	0.6	0.09	0.01	0.03	0.5	≦0.01	≦0.01	\leq 0.01	残部	3.5	ASME Code Case N673 用データ
Ι	0.6	0.09	0.01	0.03	0.4	≦0.01	≤ 0.01	\leq 0.01	残部	3.5	ASME Code Case N673 用データ
\mathbf{J}	0.9	0.20	0.03	0.03	0.6	≦0.01	≤ 0.01	\leq 0.01	残部	5.0	ASME Code Case N673 用データ
К	0.7	0.16	0.02	0.03	0.5	≦0.01	≦0.01	≦0.01	残部	5.0	ASME Code Case N673 用データ 20000hr 長時間過時効熱処理 完全焼なまし処理
L	0.5	0.14	0.01	0.03	0.4	≦0.01	≦0.01	\leq 0.01	残部	5.0	ASME Code Case N673 用データ 20000 hr 長時間過時効熱処理
М	0.6	0.09	0.01	0.03	0.6	\leq 0.01	\leq 0.01	\leq 0.01	残部	9.0	ASME Code Case N673 用データ
N	0.85	0.11	0.030	≤0.01	0.56	≤0.01	≤0.01	0.02	残部	7.0	(実製品)1000、5000、10000hr 長時 間過時効熱処理
0	0.82	0.10	0.033	≦0.01	0.68	≦0.01	≦0.01	0.013	残部	7.0	(実製品)完全焼なまし処理
Р	0.89	0.18	0.001	≤ 0.01	0.43	≤ 0.01	0.02	0.01	残部	7.0	(実製品)完全焼なまし処理

表 4 BC-A6N01 供試材成分

注) ASME Code Case N673 用データは長時間過時効熱処理(200、250、300℃にて 1000、5000、10000hr 保持)にて処理した材料で

ある

(1)供試材 A から M の押出材断面形状 (2)供試材 N と O の押出材断面形状 (3)供試材 P の押出材断面形状図

図 9 BC-A6N01 押出成形断面形状図

2.2 バスケット材料の使用環境

キャスクは原子力発電所のプール中に湿式で保管されている使用済燃料を所定場所 まで横置き姿勢で輸送した後、縦置き姿勢にして貯蔵し、その後再度横置き姿勢にし て輸送に用いることを想定している。バスケット材料の使用環境は、これに基づき以 下の通り想定している。

(1) 貯蔵期間

キャスクが建屋内等に静置され、バスケットが(2)から(4)の温度環境や応力負荷環境 にさらされる期間は貯蔵前後の輸送を含め最大 60 年間である。

(2)温度環境

キャスク貯蔵期間中は熱源である使用済燃料の崩壊熱減衰により発熱量が低下し、 一般的にバスケット温度は初期に約 200℃、終期に 100℃程度まで減衰することが知 られている。また、60 年間の貯蔵供用期間中の熱負荷によるアルミニウム合金/ホウ 素添加(B4C 添加粉末冶金)アルミニウム合金の特性変化を想定する必要がある。

(3)雰囲気

バスケット周囲の雰囲気は、使用済燃料の装荷及び取出し時の短期間のみ冠水状態となるが、他の貯蔵期間中は不活性ガス(He ガス)雰囲気である。

(4)応力負荷環境

キャスク貯蔵期間中、キャスクは強固な地盤に設置された建屋内等に縦置きにて静置 され、所定の貯蔵期間の間保持される。この供用期間中に動的な荷重は地震等の外部 事象を想定するのみであり、それ以外の外部荷重は基本的に生じない。また、通常バ スケットに熱応力が生じない構造設計(バスケット溶接構造等の剛設計ではなく、菓 子折り構造)であり、自重による荷重を考慮すればよく、それに伴う発生応力は1MPa 未満と小さいためクリープも無視し得る。

また、輸送時や貯蔵までの所定期間横置き姿勢となること、及び横置き貯蔵の形態も あることから横置き貯蔵姿勢を考慮すると、バスケットに係る荷重は自重に加え燃料 集合体重量が負荷され、横置き貯蔵時の発生応力は約 3MPa 以下と小さいため横置き 姿勢での貯蔵においてもクリープは無視し得る。

一方、キャスク輸送時には IAEA 及び国内の輸送規則等の法規則に基づき、運用様 態から通常想定されうる一般の試験条件と事故事象を想定する特別の試験条件(9m 落 下事故事象等)において、未臨界、遮蔽、除熱、密封の各安全機能を維持するための 構造強度を必要とする。

構造強度において、当該確性試験に供するバスケット材は、未臨界機能を維持するう えで重要な構成材であり、次の設計上の考え方により設計する。 ▶ 臨界評価体系に影響するバスケット変形が生じない板厚及び構造

技術的に想定されるいかなる場合でも未臨界機能を維持するため、臨界評価 体系に影響するバスケットの塑性変形を許容しない設計

このため、上記説明を容易にする対応として、特別の試験条件(9m 落下等)等の高 負荷条件において、設計降伏点 *S*,を越えない設計を行う。

3. 確性試験の検討内容

3.1 供試材の作製方法

3.1.1 60 年の使用期間を考慮した材料特性変化の考え方

金属材料の強度に寄与する強化機構は、全て結晶中の転位の運動を妨げる機能に よって強化に寄与しており、一般的に次の4種がある。長期間の高温保持を考慮し た強度の検討にあたって考慮すべき温度の影響についての一般的な理解を以下の 通りまとめた。

- (a) 固溶強化:原子サイズの異なる溶質元素を母相中に固溶させた場合、溶質原子の周囲の母相結晶格子にひずみ場を生じ、これが転位の運動の障害となる。高温でもこの作用は失われないが、温度変化に伴って固溶限を超えた溶質原子が析出物などとして母相から排出されれば、固溶強化量は減少する。表 5 にアルミウムの固溶強化に対する種々の元素の影響を示す。
- (b) 析出強化(粒子分散強化を含む):母相中に微細に析出した第二相粒子やその周囲の格子ひずみ場が転位の運動を阻害する強化機構である。高温での安定性は、第二相粒子の熱的安定性に依存し、析出物が母相中に固溶したり、粗大化により数密度が減少する場合は効果が減少する。粒子分散強化は主として高温での安定性が高いセラミックス等の第二相粒子を、材料内部からの析出ではなく外部からの混入によって分散させる。
- (c)加工硬化:金属材料に塑性ひずみを付与した場合、転位密度が著しく増大する。 転位同士の相互作用により転位の運動が妨げられ、強度が増大する。塑性ひず みにより導入された転位密度が減少するような操作(熱処理)により、加工硬 化は失われる場合がある。
- (d)結晶組織微細化:結晶粒が微細化されることにより、転位の運動の障害物である結晶粒界の分布密度が増大し、強度が上昇する機構である。高温では再結晶により結晶粒が粗大化し、強化量が減少する場合がある。

BC-A6N01とMB-A3004における強化機構の特徴を理解し、供用期間中の温度変 化を考慮した環境条件にて平衡状態に達し安定化させた材料をもって材料特性評 価することが重要である。ここではこのような安定化にかかる考え方を整理する。

(1)BC-A6N01 の強化機構

本材料に添加されている溶質元素としては Mg と Si があるが添加量が少ないため、 顕著な固溶強化には寄与しないと考えられる。本材料は押出後の冷却速度が小さく、 焼入れを行わないため、過飽和に固溶している溶質元素量は少ないと推定している。

Mg2Si 系析出物が生じる Al-Mg-Si 系合金の析出挙動は、Al-Mg2Si 擬二元系とし て理解される。図 10 に Al-Mg2Si 擬二元系平衡状態図[1]を示す。BC-A6N01 のう ち B4C 粒子を除くマトリクス部分である 6N01 合金は、0.63 から 1.26mass%Mg2Si の組成を持つ。Al-Mg-Si 系合金の過飽和固溶体の相分解過程は表 6 に示す通りと 考えられている[1]。ただし、BC-A6N01 は押出後に溶体化・焼入れを経ていないた め、多量の焼入れ過剰空孔を必要とする初期構造(針状 GP ゾーンあるいは 6"相) は、キャスク供用中に生じる主な析出物ではないと予想される。針状 GP ゾーンあ るいは 6"からの無拡散変態によって形成される棒状中間相 6'相の形成も、同様に支 配的ではないと考えられる。図 12 に 6"相及び 6'相の透過電子顕微鏡観察像を示す。 焼入れ過剰空孔を必要としない安定相 6 相は形成され成長すると考えられるが、こ れはサイズが大きく数密度が小さいため強化には寄与しない。

BC-A6N01には 7mass%の B₄C が含有されており、これはある程度の分散強化を もたらすと考えられる。図 11 に BC-A6N01 押出材の光学顕微鏡による組織観察結 果例を示す。黒色の不定形粒子が B₄C である。

図 13 に EBSD を用いて観察した BC-A6N01 押出材の結晶粒の形状を示す。平均 結晶粒径は約 5µm 程度であり、アトマイズ粉末の粉末冶金法で製造される BC-A6N01の結晶粒径は、一般的な鋳造材や展伸材の結晶粒径(数十µmから数 mm) よりも小さい。結晶粒径 D(mm)と降伏応力または 0.2%耐力 σ_y の間には $\sigma_y=\sigma_0+kD^{0.5}$ なる Hall-Petch の関係が知られており、純アルミニウムの場合は結晶粒の寄与を示 す係数 k には 2.16(N/mm²/mm^{0.5})が報告されている[1]。これは例えば結晶粒径 50µm と 5µm を比較すると後者は降伏応力で 20MPa 程度高くなる結果であり、結 晶粒微細化の寄与は小さくない。

バスケット用 BC-A6N01 は押出後に若干の整直を行うのみであるため、顕著な加 工硬化は生じていない。

(2)MB-A3004の強化機構

Mg、Cu及び Mnの添加による強化は、Mg と Cu は主として固溶強化、Mn は Mn 系分散相(Al6Mn 等)として若干の分散強化を担い、同時に結晶粒界移動を抑制 する効果により結晶粒微細化強化の保持を行う役割を果たしている。MB-A3004の ように Fe や Si を含む実用合金の場合、Mn 系分散相は Al6(Fe,Mn)、Al18(Fe,Mn)3Si 等の複雑な組成を有するようになる[2][3]。

図 14 は Mn 系分散相の透過型電子顕微鏡観察結果を示している。Mn は過飽和固 溶しやすいため、押出後、過飽和状態で固溶し強化に寄与していることも否定はで きない。

バスケット用 MB-A3004 は鋳造後に熱間押出で成型され、粉末冶金で製造される BC-A6N01 のように結晶粒径を微細化する処理はなされていない。

通常、3000系合金は圧延等の冷間加工で加工硬化を付与して強度を上げて使用されることが多いが、バスケット用 MB-A3004 は押出後に若干の整直を行うのみであるため、顕著な加工硬化は生じていない。

以上に述べた内容を表 7 に要約する。この結果より、バスケット材料で 60 年間 の供用中に生じる変化として、以下のことが想定される。

- (a) 初期に存在している若干の過飽和な固溶度が平衡固溶程度に低下し、過剰な固 溶強化が消失する。
- (b) 初期に存在している析出強化量、加工硬化量及び結晶粒微細化強化量がその温度における基底量程度に低下する。

したがって、本確性試験での検討内容は、実際に 60 年間を要することなく合理的 にこれらを評価するための供試材の作製方法である。

		(kgf/mm ² /wt%)
元素	σ/C (耐力)	σ/C (変形抵抗)
Ag	2.0	1.5
Be	_	2
Cd	_	6.8又は6.0
Ce		9.2
Cu	4.76	5.8
Fe	10	12.8
Ga	0.75	1.3
Ge	_	1.6
Hf	_	3.8
Mg	2	2.5 又は1.6
Mn	_	1.9
Si	1.1	2
V	_	4.6
Zn	0.51	1又は0.3

表 5 アルミニウムの固溶強化に対する種々の元素の寄与

 $(1 \text{ kgf/mm}^2 = 9.8 \text{ N/mm}^2)$

図 10 文献による Al-Mg-Si 擬二元系平衡状態図[1]

100µm

図 11 BC-A6N01 押出材の光学顕微鏡観察結果例

2-37 AI-1.1% Mg-0.4% Si 合金の時効組織 560℃で溶体化・水焼入れ後,175℃で各時間時効した。母相の〈100〉方向に沿って生じた針状 GP ゾーン (β″)が成長・粗大化し,棒状中間相 (β′) へと変化していく。〔提供:菅野幹宏 (東京大学)〕

平均結晶粒径:4.4µm

平均結晶粒径:5.1µm

図 13 BC-A6N01 押出材の EBSD による結晶粒(結晶方位分布)観察像の例 (色は方位を示しておらず、異なる結晶粒と識別した領域が同色とならないように決めている。)

(a) 均質化処理530°C 保持なし

(b) 均質化処理 610°C, 9 hr 保持

(c) 均質化処理 610°C, 27 hr 保持
 図8 均質化処理条件の異なる3004合金鋳塊の TEM 組織²⁵⁾
 * 組成 Mn 1.05 wt%, Mg 1.20 wt%, Mg 1.20 wt%, Fe 0.45 wt%, Si 0.20 wt%

図 14 A3004 合金鋳造塊の透過電子顕微鏡明視野像[2]

杖料・	状態	MB-A	13004	BC-A6N01		
強化機構		供用初期	供用終期	供用初期	供用終期	
[1] 固溶 強化	主	Mg	Mg (平衡固溶量)	_	_	
	副	Cu, Mn	Cu, Mn (平衡固溶量)	_	_	
[2] 析出 強化	主	Al6Mn Al6(Fe,Mn) Al ₁₈ (Fe,Mn) ₃ Si	Al6Mn Al6(Fe,Mn) Al ₁₈ (Fe,Mn) ₃ Si	$Mg_2Si(6")$	$Mg_2Si(b)$	
	副	Al ₃ Fe	Al ₃ Fe	Al_2O_3 B_4C	$\begin{array}{c} Al_2O_3\\ B_4C \end{array}$	
[3] 加工硬	化	あり (整直 0.5~2%)	_	あり (整直 0.5~ 2%)	_	
[4] 組織微	細化	あり	あり ^注 2)	あり	あり ^{注 2)}	

表 7 本確性試験の対象材料における強化機構概要注1)

注1) 室温における強化機構

注 2) クリープ領域(高温領域)では静的強度の強化機構としての寄与は小さく、ク リープ強度は低下させる。

3.1.2 強化機構に基づき使用期間中の強度を再現する処理方法

前節で述べた MB-A3004 及び BC-A6N01 の強化メカニズムを考慮し、60 年間の使 用環境を考慮した材料変化に対応した材料強度を評価するために、熱処理による次の 二種類の前処理方法を検討する。

- (a) 長時間時効熱処理方法の妥当性
- (b) 高温焼鈍及び制御冷却熱処理方法(完全焼なまし処理)の妥当性

(1)長時間時効熱処理条件の考え方

長時間時効の条件決定には、以下の点を考慮した。

- イ)キャスクのバスケットの使用温度において想定される相変態や析出物成長が生じる温度域であること。
- ロ)キャスクのバスケットの使用温度よりも高温で、相変態や析出物成長を加速する 条件であること、さらに時効に伴う機械的性質の変化量が減少することが確認で き、その変化量がほぼゼロとみなせるまでの長時間であること。
- ハ)キャスクのバスケットの使用温度で生じるよりも顕著な再結晶が進行して、結晶 粒組織が著しく変化しないこと。

BC-A6N01とMB-A3004それぞれの相平衡挙動を考慮して上記の条件が満足されるよう に長時間時効の温度を以下に述べるように決定した。長時間時効の時間については、 ロ)が満足されるまで継続することとした。

(a) BC-A6N01

BC-A6N01のうち、B4C粒子を除くマトリクス部分である6N01合金は、0.63から 1.26mass%Mg2Siの組成を有している。図10のAl-Mg2Si擬二元平衡状態図によれば 、このMg2Siが全て固溶する最低温度は約400℃である。イ)の観点から、時効温度は これよりも低い必要がある。

バスケットは最高で約200℃となることから、ロ)の要求により長時間時効温度はこ れよりも高く設定する必要がある。

図 15はA6N01と同成分系であるA6061合金の高温時効曲線である[4]。このデータ は溶体化・焼入れ後、時効を121℃、149℃、171℃、204℃、232℃及び260℃でそれ ぞれ実施した場合の引張特性の変化を示している。比較的高温の時効においては、時 効時間が長くなるに従い、3.1.1で述べたように、針状GPゾーンあるいは8"相は次第 に棒状中間相6³相や安定相6相へと変態し、数密度が減少するため析出強化量が減少 していく。このデータより、時効温度が232℃や260℃であれば、比較的短時間で析 出強化が失われ、強度が減少し始めることが分かる。

以上の検討により、長時間時効の実施温度として、400℃以下かつ232℃以上の制限を満足し、ハ)の観点から極力バスケットの温度に近い250℃をまず選定した。これに加え、さらに50℃加速した300℃でも実施することとした。

(b) MB-A3004

図 16にAl-Mn二元平衡状態図[3]を示す。300℃以下におけるMnの平衡固溶量は極めて小さく、平衡状態においてはMnの多くはAl固溶体と平衡するAl6Mnとして晶出あるいは析出している。MB-A3004のようにFe及びSiを含有する実用合金においては、表 7に示したようにFeやMnを含む相も現れる[2]。Mnの平衡固溶量は上記のように小さいにも関わらず、溶湯の急冷凝固や高温の固溶体からの急冷により、平衡固溶量よりもかなり多く強制固溶されることが知られている[2]。強制固溶されたMnは、高温で保持すると徐々に母相から排出されている。この例として、図 17は550℃で保持したAl-Mn・Fe合金の母相中のMn濃度を保持時間に対して示す[2]。バスケット用MB-A3004は熱間押出後、自然空冷されるため、Mnの強制固溶は顕著には起きないと考えられるが、Mn強制固溶が若干あればバスケットの使用中に徐々に母相からMnが析出し、母相中のMnが減少して固溶強化が失われてゆくことになる。図 18は様々な温度で0.5から20hr保持したAl-Mn及びAl-Mn-Si合金の固溶Mn濃度変化を把握するために電気抵抗変化を示したものであり[2]、強制固溶されたMnの析出には比較的高い温度が必要であることが分かる。そこで、長時間時効温度として、後述するロ)の点で許容される極力高い温度を選定することとした。

また、Mnの析出以外についても検討した。3004合金は非熱処理型アルミニウム合 金に属し、熱処理型アルミニウム合金になされているような、強度に及ぼす熱処理の 影響についての研究例は非常に少ない。しかしながら、3004合金の合金元素である Mgおよび少量のCuを溶体化・焼入れすることにより、図 19のように時効に伴い析 出硬化を生じることが報告されている[3]。この効果を生じさせているのはAl-Cu-Mg 系の析出相であるGPBゾーンであるとされる[3]。バスケット用MB-A3004は溶体化 ・焼入れを行わないため、Al-Cu-Mg系の析出は顕著でないと考えられるが、Al-Cu-Mg 系析出物の時効析出を加速させるということも念頭に置いた。図 20に示すように、 焼入れしたAl-Cu-Mg合金では190℃で10日程度、240℃で0.1日程度、260℃では0.1 日未満で硬さのピークが終了し、この程度の温度であれば、Al-Cu-Mg系の析出も生 じることが分かる。

このように、バスケット用MB-A3004では支配的な強化メカニズムとは考えていな いものの、強制固溶のMnやAl-Cu-Mg系の析出も考慮した上で、イ)のためには250 ℃程度の温度を選定することとした。

バスケットは最高で約200℃となることから、ロ)の要求により長時間時効温度はこ れよりも高く設定する必要がある。

図 21 は A3004 合金を 350、375、400 及び 425℃で熱間圧延し、圧延後にその温 度で保持した際の硬さの変化を示す[5]。この検討は、熱間圧延前の均質化熱処理条 件を A、B 及び C と 3 種に変化させて行っている。比較的低温である均質化熱処理 条件 A では Mn 系分散相が微細・均一に生じており、結晶粒界の移動抑制効果が高 いため再結晶が進行しにくいことが分かっている。均質化熱処理条件 B 及び C では 保持中に硬さが減少しており、結晶粒組織の観察結果から、この硬さの減少は再結晶 粗大化に起因するものであることが確認されている。均質化熱処理条件 B 及び C で は、Aと比べて Mn 系分散相の分布が疎であることが確認されており、粒界移動抑制 効果が小さいために顕著な再結晶が生じたと考えられる。バスケット用 MB-A3004 の熱間押出温度と塑性変形状態は上記の熱間圧延とは同一ではないが、上記の結果を 顕著な再結晶が生じる温度の目安とした。すなわち、350℃を越える温度で長時間保 持すれば顕著な再結晶が生じ、ハ)を満足することができない可能性がある。

これらを考慮し、長時間時効温度は250℃及び300℃とした。

(2)完全焼なましの条件の考え方

キャスクの長期間にわたる使用に対して妥当な設計強度を得るために、析出物による強 化が十分に失われ、キャスクの使用環境で考えらえるような再結晶が十分に進行し、かつ 過飽和に固溶されている溶質元素がなく過剰な固溶強化がないような状況を作り出すため の完全焼なまし条件を見出すことを試みた。高温での焼なまし条件と、溶質元素の過飽和 状態を生み出さないような徐冷条件を決定することが目的であり、詳細な検討条件は 6.2 で結果とともに記載する。

図 15 A6061 合金の高温時効曲線[4]

550℃での焼鈍中の Al-1%Mn-Fe 合金中の固溶体中の Mn 濃度の時間変化[2]

図 18 冷間圧延した Al-1.3%Mn 及び Al-1.3%Mn-0.05%Si の電気抵抗変化[2]

図 19 溶体化・焼入れした 3004 合金の耐力(Y.S.)及び引張強さ(T.S.)に及ぼす 時効熱処理の影響[4]

図 20 Al-3.15%Cu-1.52Mg 合金の時効硬化曲線[1]

Fig. 4 Hardness vs. holding time curves of hot rolled plates.

図 21 A3004の硬さに及ぼす熱間圧延後の保持温度および時間の影響[6] (A,B及びCは均質化熱処理の条件である。)
3.2 材料特性評価

(1) 静的強度特性

キャスク設計においては安全機能への影響を考慮してバスケットに有意な永久変 形を生じさせない設計が必要であるため、設計降伏点 *Sy*を重視する。供用期間中の 熱負荷に対する強度変化を考慮し、当該試験データにより、各設計強度を設定するた め実施する。

(a) 供試材料の考え方

強度特性に供する供試材について、初期材、長時間過時効熱処理材及び完 全焼なまし材の各処理材の供試材に関する考え方を整理する。

(b) 試験条件及びデータ解析方法

材料試験に係る試験条件及びデータ解析方法について整理する。

(2) クリープ特性

キャスク設計において、クリープは貯蔵期間中のバスケット自重によるクリープ 変形を考慮する必要があり、当該試験データにより、各設計強度を設定するため実 施する。なおクリープ強度に関し、通常発生応力が1MPa未満と非常に小さい。そ のため、設計上、十分な裕度を持つクリープ強度特性であることを確認するため実 施する。

(a) 供試材料の考え方

クリープ試験に供する供試材について、初期材、長時間過時効熱処理材及 び完全焼なまし材の各処理材の供試材に関する考え方を整理する。

(b) 試験条件及びデータ解析方法

クリープ試験に係る試験条件、試験の実施及びデータ解析方法について整 理する。

(3) 破壊靭性

アルミニウムは fcc 構造の延性材料であり、bcc 構造に見られるような脆性遷移を 生じないため、破壊靭性に関する詳細な検討を必要としないが、材料の特性把握及 び供用期間中の衝撃特性/破壊靭性特性が変化しないか確認するため実施する。

なお、当社キャスク設計において、9m 落下事故事象等の動的荷重が負荷された場合においても、設計降伏点 *Sy*以下の発生応力となる設計を行うこととしている。

(a) 供試材料の考え方

破壊靭性試験に供する供試材について、初期材、長時間過時効熱処理材及 び完全焼なまし材の各処理材の供試材に関する考え方を整理する。 (b) 破壊靭性評価方法

破壊靱性評価・確認方法について整理する。

(c) 破壊靭性における速度依存性評価方法

キャスク事故事象を考慮し、負荷速度依存性の評価・確認方法について整 理する。

(d) 試験条件及びデータ解析方法

破壊靭性試験に係る試験条件、試験の実施及びデータ解析方法について整理する。

(4) 各種物性

キャスク設計において、各物性は評価モードにより保守的に評価可能な数値が異 なる。たとえば、熱伝導率は、通常貯蔵時の除熱評価では、低い値が保守性を持つ が、火災事故等では高い値が保守性を持つ。これらを考慮し、供用期間の熱負荷に 伴う各物性の変化を確認すること、及び、標準的な物性値(試験データの平均を想 定)を得るために実施する。

3.3 各設計強度の設定方法

日本機械学会が定める設計強度の算出方法(発電用原子力設備規格 材料規格 添付 1.新規材料採用ガイドライン、設計・建設規格 第Ⅱ編 高速炉規格 添付 新規材料採 用ガイドライン/添付 13-I 材料強度基準等)を基に、アルミニウム合金の特性、キ ャスク供用期間中の材料特性変化を考慮した基準策定方法を設定する。また、設定し た基準策定方法に従い、各設計強度基準値を設定する。

4. 確性試験の検討項目

バスケット材として想定される長期間の熱時効条件下でアルミニウム合金 BC-A6N01 及び MB-A3004 に生じ得る変化を考慮した材料強度の評価方法として、3 章で述べた影響・効果を実験的に確認するための試験項目の概要を表 8 に示す。

4.1 供試材の作製方法

バスケットの 60 年間の使用で生じ得る変化を考慮した強度評価を適切に行うことが できる合理的な予備処理方法を検討する。

4.2 各設計強度の設定方法

日本機械学会が定める設計強度の算出方法を基本として、キャスク供用期間中の材料特性変化を考慮した設計強度の設定方法を規定する。

4.3 設計用材料特性データの取得

キャスク設計に用いる諸物性値(弾性定数、熱物性及び線膨張係数)及び靱性に関するデータを、キャスク供用期間中の材料特性変化を考慮して評価する。

	(1)供試材の作製方法	(2) 各設計強度の設定方法	(3)設計用材料特性データの取得
目的	バスケットの 60 年間の使用で生じ得る材 料的変化を考慮することができる合理的 な予備処理方法を検討する。	キャスク供用期間中の材料特性変化を考慮した設計強度の設定方法を規定する。	キャスク設計に用いる諸物性値(弾性定数、 熱物性及び線膨張係数)を、キャスク供用 期間中の材料特性変化を考慮して評価す る。 バスケット材としての適用の妥当性を靱 性の観点で確認する。
試験項目	長時間時効処理 完全焼なまし処理 引張試験 衝撃試験	クリープ及びクリープ破断試験	弾性定数測定 熱拡散率、比熱測定及び熱伝導率評価 線熱膨張係数測定 破壊靱性試験及び動的破壊靱性試験
BC-A6N01	0	0	0
MB-A3004	0	0	0

表 8 キャスクバスケット用アルミニウム合金における材料評価手法 実施項目

○:試験及び評価項目

5. 確性試験の検討方法

5.1 長時間時効材

(1)長時間時効処理

3.1.2 で示した考え方により設定した温度、すなわち 250℃と 300℃において長時間過時 効処理を行った供試材を作製する。作製した材料の機械的特性評価により材料特性の変化 の有無を確認し、変化量が減少することが確認でき、その変化量がほぼゼロとみなせる時 効時間を見出す。長時間過時効熱処理の概要図を図 22 に、その妥当性確認の概念図を図 23 に示す。機械的特性評価の内容を以下に示す。

(2)引張試験

長時間時効に伴う引張特性の変化を確認するために、以下の条件で引張試験を行い、 0.2%耐力、引張強さ、伸び及び絞りを測定した。試験片は全て試験片長手方向が押出方向 となるように採取した(図 26)。

試験片: JIS Z 2241 及び JIS G 0567 に準拠(丸棒)

試験方法: JIS Z 2241 及び JIS G 0567 に準拠

試験温度: 室温(20℃または 23℃)、100、150、200、250、300 及び 350℃

一条件当たりの試験片数:2

室温の試験では JIS Z 2241 に定める 23℃±5℃の要求を、高温試験では JIS G 0567 に定める設定温度との相違が 3℃以下、試験片内の温度差が 3℃以下の条件を満足するよう雰囲気を制御し実施した。

(3)衝撃試験

長時間時効に伴う機械的性質の変化を評価する補助的な指標として、以下の条件で V / ッチシャルピー衝撃試験を行い、吸収エネルギー、衝撃値及び横膨出量を測定した。試験 片はその長手方向が押出方向及びそれに直交する方向で、き裂伝播方向が板厚方向となる ように採取した。長手方向が押出方向の場合を L-S 方向、長手方向が押出方向に直交する 場合は T-S 方向とした(図 26)。

試験片: JIS Z 2242 に準拠 試験方法: JIS Z 2242 に準拠 試験温度: -40℃ 一条件当たりの試験片数:3

5.2 完全焼なまし材

(1)完全焼なまし及び制御冷却

完全焼なまし温度の設定のため、供試材を様々な温度にて保持することで強度を低下さ せ、その後過飽和状態を生じないように徐冷する。予備検討として、硬さ測定及び引張試 験、組織観察による強度低下と再結晶の確認を行い、熱間押出プロセス条件も考慮し、適 切な焼なまし温度を設定する。焼なまし温度設定後、焼なまし処理後の制御冷却速度を決 定する。これは極めて小さな冷却速度で常温まで冷却するプロセスであり、焼なまし温度 の設定と同様に、硬さ測定及び引張試験、組織観察による再結晶の確認を行い、その結果 により冷却条件を設定する。

設定した焼鈍温度、制御冷却条件により完全焼なまし条件を設定しその条件で供試材を 作製する。

作製した供試材に対して、材料特性評価を行い、処理時間により材料特性の変化の有無 を確認することで妥当性確認を行う。完全焼なまし処理の概要図を図 24 に、その妥当性 確認の概要図を図 25 に示す。

具体的な処理条件については、6章で予備試験の結果とともに示す。

(2)引張試験

完全焼なましによる引張特性の変化を確認するために、以下の条件で引張試験を行い、 0.2%耐力、引張強さ、伸び及び絞りを測定した。試験片は全て試験片長手方向が押出方向 となるように採取した(図 26)。

試験片: JIS Z 2241 及び JIS G 0567 に準拠(丸棒)

試験方法: JIS Z 2241 及び JIS G 0567 に準拠

試験温度: 室温(20℃または23℃)、100、150、200、250、300及び350℃

一条件当たりの試験片数:2

室温の試験では JIS Z 2241 に定める 23℃±5℃の要求を、高温試験では JIS G 0567 に定める設定温度との相違が 3℃以下、試験片内の温度差が 3℃以下の条件を満足するよう雰囲気を制御し実施した。

(3)衝撃試験

完全焼なましに伴う機械的性質の変化を評価する補助的な指標として、以下の条件でV ノッチシャルピー衝撃試験を行い、吸収エネルギー、衝撃値及び横膨出量を測定した。試 験片はその長手方向が押出方向及びそれに直交する方向で、き裂伝播方向が板厚方向とな るように採取した。長手方向が押出方向の場合をL-S方向、長手方向が押出方向に直行す る場合はT-S方向とした(図 26)。

試験片: JIS Z 2242 に準拠 試験方法: JIS Z 2242 に準拠 試験温度: -40℃ 一条件当たりの試験片数:3

5.3 各設計強度基準値の確認

(1) クリープおよびクリープ破断試験

以下の条件でクリープ及びクリープ破断試験を行い、破断時間と最小クリープ速度を測 定した。

- 供試材: BC-A6N01 及び MB-A3004 の初期材と長時間時効材
- 試験片: 丸棒試験片
- 試験片採取方向:応力方向が押出方向に平行になるように試験片を採取した。

(試験片採取方向は、規格の管に対する要求に合致している。)

- 試験温度: 150、200、250 および 300℃で、BC-A6N01 は 100℃でも若干数 を、MB-A3004 は 350℃でも若干数を実施した。
- 試験応力: 各温度での耐力を超えない程度で複数の負荷応力を設定した。

(2)各設計強度基準値の算出

5.1 及び 5.2 で得られた引張特性と 5.3(1)で得られたクリープ強度より、日本機械学会が 定める設計強度の算出方法(発電用原子力設備規格 材料規格 添付 1.新規材料採用ガイ ドライン、設計・建設規格 第 II 編 高速炉規格 添付 新規材料採用ガイドライン/添付 13-I 材料強度基準等)を基に、アルミニウム合金の特性、キャスク供用期間中の材料特性変 化を考慮した設計降伏点(*Sy* 値)、設計引張強さ(*Su* 値)、設計応力強さ(*Sm* 値)及び 許容引張応力(*S* 値)の各設計強度基準値を定める。 5.4 物性值測定

(1)弾性定数測定

初期材、長時間時効材及び完全焼なまし材の縦弾性係数とポアソン比を確認するために、 弾性定数測定を実施した。試験片は試験片長手方向が押出方向(L方向)及びそれに直交す る方向(T方向)とした(図 27)

試験片: 長さ 60mm、幅 10mm、厚さ 2mm の板状試験片(図 28)

試験方法: 共振法を用いてアルゴン雰囲気中で測定を行った。

ポアソン比 vは、等方性材料を仮定して、縦弾性係数 Eとせん断弾性係数 Gより v=El(2G)-1の関係を用いて算出した。

(2)熱物性測定

初期材、長時間時効材及び完全焼なまし材の熱伝導率の変化を確認した。

試験片: 直径 10mm、厚さ 1mm の円板試験片(図 29)

試験方法: レーザフラッシュ法を用いた熱定数測定装置により、比熱 C_p と熱 拡散率 a の 2 つを直接測定した。熱伝導率 λ は $\lambda = \rho C_p a$ の関係よ り算出した。かさ密度 ρ はアルキメデス法で別途測定した。

試験片は、レーザで加熱された表面からの熱流束が主に伝播する方向(円板試験片の厚さ方向が押出方向)である L 方向、及びそれに直交する T 方向の両方で実施した(図 27)。

(3)線熱膨張係数測定

初期材、長時間時効材及び完全焼なまし材の線熱膨張係数を確認した。

試験片:	直径 5mm、長さ 20mm の円筒状試験片(図 30)
試験方法:	標準試料と測定試料を同時に一定速度で昇温したときの熱膨張量
	の差より試料の熱伸びを測定した。標準試料として石英ガラスを

用いた。 試験片は測定方向が押出方向と平行である L 方向、及びそれに直交する T 方向の両方で実施した(図 27)。

5.5 破壊靭性の確認

5.5.1 破壊靭性試験

BC-A6N01とMB-A3004がアルミニウム合金として普通の破壊靱性を示す延性材料で あることを確認するための参考として、破壊靱性値の評価を行った。供試材はMB-A3004 とBC-A6N01の初期材及び完全焼なまし材とした。試験片はASTM E1820に準拠した 0.5T CT 試験片(図 31)とし、板厚の1/2位置よりき裂の進展方向と押出方向が一致するT-L 方向で採取した。試験片には長さ2mmの疲労予き裂導入後に試験片板厚の10%の深さの サイドグルーブを導入した。

5.5.2 動的破壊靭性試験

破壊靭性に及ぼす負荷速度の影響の評価するために、動的破壊靭性試験を実施した。供 試材は MB-A3004 と BC-A6N01 の初期材とした。試験片は ASTM E1820 に準拠した 0.5T CT 試験片とし、板厚の 1/2 位置よりき裂の進展方向と押出方向が一致する T-L 方向で採 取した。試験片には長さ 2mm の疲労予き裂導入後に試験片板厚の 10%のサイドグルーブ を導入した。

試験装置は油圧サーボ式疲労試験機 EHF S20 を用いた。試験部の構成の概形を図 33 に示す。ロードセルの固有振動数は 4.2kHz(10kN 用)である。試験はストローク制御で行 い、動的破壊靭性試験では 500mm/s、10mm/s (MB-A3004 のみ)を目標の変位速度とした。 なお、MB-A3004 と BC-A6N01 ともに参照データの取得を目的として静的破壊靭性試験 (目標変位速度: 0.01mm/s) も併せて実施した。

図 22 長時間過時効熱処理方法の概要図(BC-A6N01の例)

図 23 長時間過時効熱処理の妥当性確認方法の概念図(BC-A6N01の例)

図 24 完全焼なまし処理方法の概要図 (BC-A6N01の例)

図 25 完全焼なまし処理の妥当性確認方法の概念図(BC-A6N01の例)

図 26 押出材における試験片採取方向

図 27 押出材における物性値測定用試験片採取方向

図 28 弾性定数測定用試験片の形状

図 29 熱物性測定用試験片の形状

図 32 押出材における破壊靭性試験片採取方向

図 33 動的破壊靭性試験の装置構成

6. 確性試験の実施結果

6.1 長時間時効材の強度の確認結果

6.1.1 引張特性

(1)試験条件に関する予備検討

引張試験は JIS G 0567 の規定に従い 0.2%耐力出現前と後で異なるひずみ速度を適用している。この条件を「通常の試験条件」と称する。多くの引張試験を行うに当たり、このことが評価しようとする引張特性に大きな影響を与えないことを確認した。アルミニウム合金の場合はひずみ速度の影響が 200℃付近で現れやすいと考えられていることから、BC-A6N01と MB-A3004の両方を対象に 200℃における引張試験をひずみ速度を変化させて実施し、その感度を確認した。

表9に結果を示す。図34と図35はBC-A6N01の0.2%耐力、引張強さ、伸び及び絞りに対するひずみ速度の影響をグラフとして示す。図36と図37はMB-A3004に対する同様のグラフである。程度は小さいものの、MB-A3004とBC-A6N01の0.2%耐力と引張強さはひずみ速度への正の依存性を有していることが分かる。すなわち、ひずみ速度が小さい場合に強度が小さく評価される。ひずみ速度を本確認試験の範囲より小さくすると、引張試験一回に数時間を要するため、クリープの寄与が大きくなり静的強度の評価とはならなくなる。一方で、ひずみ速度がこの領域以下は、6.3で述べるクリープ試験(試験の実績で約3×10⁻⁶(s⁻¹)以下)に対応しており、クリープ強さを適切に反映することでひずみ速度の観点からの評価を行うことができると考えられる。なお、参考としてアルミニウム合金の引張特性に及ぼすひずみ速度の影響を示す文献データ[7]に、本検討でのひずみ速度変化範囲を図38に示す。

設計基準値への影響の観点からは、最も過酷な衝撃荷重である 9m 落下時のひずみ速度 は、10^o(s⁻¹)オーダであり、試験条件のひずみ速度による試験値は保守性を有する。低速側 ではクリープ試験により得られた値を基に設定する S 値にて設計基準値を定めており保守 性を有する。このことから、現試験条件に基づく設計基準値設定に影響はないことを確認 した。

以下、全ての引張試験では、耐力出現後にひずみ速度を増大させる通常の条件で試験を 行った。

(2)BC-A6N01

表 10 と表 11 に BC・A6N01 初期材及び 250℃または 300℃で 1000hr、5000hr 及び 10000hr の時効を行った長時間時効材の引張試験結果を示す。長時間時効に伴う引張特性 の変化を把握するために、これらをグラフ化したものを以下に示す。強度変化の詳細を知 るために、引張試験温度毎に結果を時効時間に対して整理した。なお、後述するが前記の 長時間時効材に加え、組織観察やクリープ試験には 20000hr の長時間時効材を追加して評 価している。

図 39、図 40 及び図 41 に BC-A6N01 初期材及び長時間時効材の 0.2%耐力、引張強さ 及び伸びの温度依存性をそれぞれ示す。250℃及び 300℃での長時間時効の結果、0.2%耐 力と引張強さは顕著に減少することが確認できた。伸びも長時間時効により若干増大して いると考えられる。

図 42 と図 43 に BC-A6N01 の 0.2% 耐力に及ぼす 250℃及び 300℃での長時間時効の 影響をそれぞれ示す。0.2%耐力は時効時間 1000hr まではやや顕著に低下するが、その後 は変化量が小さくなり 10000hr 程度では概ね一定値に近づくような傾向を示し、5000hr と 10000hr の間で変化量がゼロとみなせる状態に到達していると考える。このような長時 間時効による 0.2%耐力の低下は、引張試験温度が高いほど小さくなる傾向を示す。

図 44 と図 45 に BC-A6N01 の引張強さに及ぼす 250℃及び 300℃での長時間時効の影響をそれぞれ示す。引張強さは時効時間 1000hr まではやや顕著に低下するが、その後は変化量が小さくなり 10000hr 程度では概ね一定値に近づくような傾向を示し、5000hr と 10000hr の間で引張強さの変化量がゼロとみなせる状態に到達していると考える。長時間時効による引張強さの低下は、引張試験温度が高いほど小さくなる傾向を示す。

図 46 と図 47 に BC-A6N01 の伸びに及ぼす 250℃及び 300℃での長時間時効の影響を それぞれ示す。引張強さは時効時間 1000hr までに若干の増大を示す。その後の変化は小 さく、なり 10000hr 程度までには一定値に近づくような傾向を示し、5000hr と 10000hr の間で伸びの変化量がゼロとみなせる状態に到達していると考える。BC-6N01では、250℃ と 300℃いずれの温度でも 10000hr 程度の長時間時効により、初期材において存在する非 平衡な強化因子が失われて強度が安定すると考えられる。

(3)MB-A3004

表 12 から 表 17 に 250℃または 300℃で 1000hr, 5000hr 及び 10000hr の長時間時効 を行った MB-A3004 の引張試験結果を示す。長時間時効に伴う引張特性の変化を把握する ために、これらをグラフ化したものを以下に示す。

図 48、図 49 及び図 50 に MB-A3004 初期材及び長時間時効材の 0.2%耐力、引張強さ 及び伸びの温度依存性をそれぞれ示す。250℃及び 300℃での長時間時効の結果、0.2%耐 力と引張強さは顕著に減少することが確認できた。伸びには大きな変化が認められない。

強度変化の詳細を知るために、引張試験温度毎に結果を時効時間に対して整理した。図 51 と図 52 に MB-A3004 の 0.2%耐力に及ぼす 250℃及び 300℃での長時間時効の影響を それぞれ示す。0.2%耐力は時効時間 1000hr まではやや顕著に低下するが、その後は変化 量が小さくなり 10000hr 程度では概ね一定値に近づくような傾向を示す。すなわち、 5000hr と 10000hr の間で変化量がゼロとみなせる状態に到達していると考える。このよ うな長時間時効による 0.2%耐力の低下は、引張試験温度が高いほど小さくなる傾向を示す。

図 53 と図 54 に MB-A3004 の引張強さに及ぼす 250℃及び 300℃での長時間時効の影響をそれぞれ示す。引張強さは時効時間 1000hr まではやや顕著に低下するが、その後は変化量が小さくなり 10000hr 程度では概ね一定値に近づくような傾向を示し、5000hr と 10000hr の間で変化量がゼロとみなせる状態に到達していると考える。長時間時効による引張強さの低下は、引張試験温度が高いほど小さくなる傾向を示す。

図 55 と図 56 に MB-A3004 の伸びに及ぼす 250℃及び 300℃での長時間時効の影響を それぞれ示す。引張試験温度が 150℃までの場合、引張強さは時効時間 1000hr までに若 干の増大を示し、その後の変化は小さくなる。一方、引張試験温度が 200℃以上では、伸 び測定値のばらつきは大きくなり、時効温度に伴う傾向は明確には認められなくなる。伸 びの変化が時間や引張試験温度によって複雑な挙動に見えるのは、ばらつきが大きいこと によると思われる。

0.2%耐力と引張強さの変化挙動から、MB-A3004 では、250℃と 300℃いずれの温度で も 10000hr 程度の長時間時効により、初期材において存在する非平衡な強化因子が失われ て強度が安定すると考えられる。 表 9 BC-A6N01 と MB-A3004 の 200℃引張特性に及ぼすひずみ速度の影響

(試験温度:200℃)

ひす	→み速度	Ν	/IB-A300	4 初期を	ł	E	BC-A6N0	1初期标	ł
(%/min)	(s ^{·1})	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)
7 5	1.9×10^{-3}	111	152	34.5	72	89	107	23.0	61.0
7.0	1.3×10^{13}	110	150	34.5	72	84	101	25.0	64.0
0.82	1.4×10 ⁻⁴	104	133	31.5	76	76	86	28.5	69.4
0.83		103	133	33.0	81.4	77	87	28.0	70.0
0.42	$7.0 imes 10^{-5}$	102	128	30.0	81.8	77	87	26.0	67.8
0.42		103	130	30.5	80.4	77	86	25.5	65.8
0.2	5 0×10-5	104	127	29.5	82	75	85	23.5	68.0
0.5	5.0~10 °	102	127	29.5	83	78	88	22.5	65.0
0.16	2.7×10^{-5}	101	125	28.5	83.2	76	85	24.5	62.4
		99	123	27.0	84.6	76	85	23.0	65.5

参考表 BC-A6N01とMB-A3004の200℃引張特性条件(通常の試験条件)

(試験温度:200℃)

J	MB-A3004 初期材				BC-A6N01 初期材				
(%/min)	(s ⁻¹)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)
耐力までは 0.3 耐力以降 7.5に 変更(通常試験 条件)	耐力までは 5.0×10 ^{·5}	103	153	37.0	71.8	77	104	25.0	63.3
	耐力以降は 1.3×10 ⁻³ に変更(通常試験条件)	102	148	35.5	69.8	76	102	29.0	63.3

図 34 200℃における BC-A6N01 の 0.2%耐力と引張強さに及ぼすひずみ速度の影響 (「通常条件」は途中でひずみ速度を変化させるためプロットしていない)

図 35 200℃における BC-A6N01 の伸びと絞りに及ぼすひずみ速度の影響 (「通常条件」は途中でひずみ速度を変化させるためプロットしていない)

図 36 200℃における MB-A3004 の 0.2%耐力と引張強さに及ぼすひずみ速度の影響 (「通常条件」は途中でひずみ速度を変化させるためプロットしていない)

図 37 200℃における MB-A3004 の伸びと絞りに及ぼすひずみ速度の影響 (「通常条件」は途中でひずみ速度を変化させるためプロットしていない)

図 38 アルミニウム合金 A6061BE-T6 及び A6063BE-T6 の 0.2%耐力に及ぼすひずみ 速度の影響[7]

時	<i>(</i> ++-		計驗		引 張 試	験 結 果	
効 処 理	供試 材	試験片 符号	武్ 温度 (℃)	0.2%耐力 (MPa)	引 張 強 さ (MPa)	伸び (%)	絞 り (%)
		A1	23	111	189	18.5	36.2
		A2	23	109	188	20.0	37.8
		A3	100	102	160	20.0	42.1
_		A4	100	109	166	14.0	29.7
¥)		A5	150	94	138	24.0	45.3
」期	NT	A6	150	93	137	24.0	47.7
¢) (IN	Α7	200	76	107	27.0	57.8
ر ج		A8	200	74	104	27.0	56.2
,		A9	250	59	80	32.5	73.4
		A10	250	61	83	23.0	69.1
		A11	300	43	61	36.0	79.4
		A12	300	45	63	29.5	73.7
		25-1-L1	23	85	172	18.5	41.2
		25-1-L2	23	88	172	18.5	36.1
		25-1-L3	100	76	138	24.5	38.3
•		25-1-L4	100	80	142	21.0	35.6
0hı		25 - 1 - L5	150	71	119	26.0	41.2
00	Ν	25-1-L6	150	71	119	29.5	50.4
×		25-1-L7	200	59	95	25.0	58.0
0°0		25-1-L8	200	57	96	25.5	54.7
$\overline{2}$		25-1-L9	250	51	76	36.0	67.7
		25-1-L10	250	46	70	30.0	61.9
		25-1-L11	300	42	62	38.0	74.5
		25-1-L12	300	42	60	33.5	75.6
		30-1-L1	23	80	170	20.0	40.7
		30-1-L2	23	79	169	18.0	35.3
		30-1-L3	100	66	137	26.5	51.9
		30-1-L4	100	72	140	24.0	44.2
hr		30-1-L5	150	61	118	29.0	49.2
000		30-1-L6	150	62	117	26.5	52.1
×10	Ν	30-1-L7	200	53	94	30.5	63.9
ŝ		30-1-L8	200	54	96	30.0	61.0
300		30-1-L10	250	43	68	36.0	80.5
		30-1-L11	300	38	60	34.0	74.8
		30-1-L12	300	39	60	40.0	77.9
		30-1-L13	350	30	48	41.5	80.3
		30-1-L14	350	30	47	48.0	81.1

表 10 BC-A6N01 初期材及び長時間時効材の引張試験結果

引用 試験片 部号 副使 部号 の 30 (C) の (MPa) 引振強さ (MPa) 伸び (%) 故り (%) 1000020007 255-51.1 23 80 165 20.0	時	Æ		計駘		引 張 試	験結果	
HOODY 25:5:1.1 23 80 165 20.0 25:5:1.2 23 82 162 22.5 25:5:1.2 100 74 132 21.0 25:5:1.5 100 74 136 28.0 25:5:1.6 150 62 113 26.0 25:5:1.7 200 59 95 26.0 25:5:1.0 250 50 74 30.0 25:5:1.0 250 49 73 39.5 25:5:1.1 230 81 170 20.5 30:5:1.2 23 82 170 20.5 30:5:1.2 23 82 170 20.5 30:5:1.1 300 41 22.5 30:5:1.1 200 58 95 30.5 30:5:1.1 200 58	効処理	供試 材	試験片 符号	温度 (℃)	0.2%耐力 (MPa)	引張強さ (MPa)	伸び (%)	絞 り (%)
Y000 Y002 Y002 Y002 Y002 Y002 Y002 Y002			25-5-L1	23	80	165	20.0	-
TOODY 1000 72 132 21.0 . 1000 25:5:L3 1000 74 136 28.0 . 25:5:L6 150 68 119 24.0 . 25:5:L7 2000 59 95 26.0 . 25:5:L7 2000 56 95 28.5 . 25:5:L1 200 56 95 28.5 . 25:5:L1 200 44 73 39.5 . 25:5:L1 300 41 59 34.0 . 25:5:L1 300 41 59 34.0 . 30:5:L2 23 82 170 20.5 . 30:5:L3 100 73 142 22.5 . 30:5:L4 100 73 142 22.5 . 30:5:L7 200 58 95 30.5 . 30:5:L1 300 41 60 38.0			25-5-L2	23	82	162	22.5	-
HOODY YOOR N 25.5-1.4 25.5-1.5 100 100 25.5-1.6 74 100 25.5-1.6 133 26.5 25.5-1.7 28.0 200 200 1000 YOOR 25.5-1.6 150 25.5-1.7 62 200 113 25.5-1.8 20.0 200 25.5-1.0 25.5-1.1 200 25.5-1.10 50 25.5-1.10 74 30.0 30.0 25.5-1.1 200 25.5-1.11 300 41 59 42.5 34.0 25.5-1.1 200 30.5-1.2 81 30.5-1.1 171 20.0 20.0 30.5-1.5 150 30.5-1.4 100 73 142 22.5 17. 30.5-1.5 150 66 119 21.5 30.5-1.5 150 66 119 21.5 30.5-1.5 150 67 95 30.5 30.5-1.1 23 70 170 18.5 33.5 25.10-1.1 23 70 170 18.5 33.5 25.10-1.1 23 70 170 18.5 33.5 25.10-1.1 23 70			25-5-L3	100	72	132	21.0	-
No 255-15 150 62 113 26.5 - 255-16 150 68 119 24.0 - 255-16 150 68 119 24.0 - 255-18 200 56 95 28.5 - 255-110 250 49 73 39.5 - 25-5-111 300 41 59 42.5 - 25-5-112 300 41 59 42.5 - 25-5-113 300 41 59 42.5 - 30-5-12 23 82 170 20.5 - 30-5-13 100 85 142 19.0 - 30-5-14 100 73 142 22.5 - 30-5-17 200 58 95 30.5 - 30-5-11 230 41 60 38.0 - 30-5-11 300 42 60 38.0	hr		25-5-L4	100	74	136	28.0	-
N 255-16 150 68 119 24.0 . 25.5 1.8 200 59 95 26.0 . 25.5 1.8 200 56 95 28.5 . 25.5 1.0 25.0 50 74 30.0 . 25.5 1.0 25.0 49 73 39.5 . 25.5 1.0 20.0 41 59 34.0 . 25.5 1.0 20.0 41 59 34.0 . 30.5 1.0 23 81 171 20.0 . 30.5 1.2 23 82 170 20.5 . 30.5 1.00 85 142 19.0 . . 30.5 1.00 68 120 25.5 . . 30.5 1.00 67 95 36.0 . . 30.5 1.0 25.0 <td>00</td> <td></td> <td>25-5-L5</td> <td>150</td> <td>62</td> <td>113</td> <td>26.5</td> <td>-</td>	00		25-5-L5	150	62	113	26.5	-
Y 000	20	N	25-5-L6	150	68	119	24.0	-
N 25:5-L8 200 56 95 28.5 - 25:5-L9 250 50 74 30.0 - 25:5-L10 250 49 73 39.5 - 25:5-L11 300 42 59 34.0 - 25:5-L12 300 41 59 42.5 - 30:5-L1 23 81 171 20.0 - 30:5-L3 100 85 142 19.0 - 30:5-L4 100 73 142 22.5 - 30:5-L6 150 66 119 24.5 - 30:5-L9 200 57 95 28.5 - 30:5-L9 200 58 95 30.5 - 30:5-L9 200 57 95 28.5 - 30:5-L9 200 57 95 30.6 - 30:5-L9 200 58 96 35.0	ÿ	11	25-5-L7	200	59	95	26.0	-
A 255-1.9 250 50 74 30.0 - 25.5-1.11 300 42 59 34.0 - 25.5-1.12 300 41 59 42.5 - 30.5-1.1 23 81 171 20.0 - 30.5-1.4 100 85 142 19.0 - 30.5-1.4 100 85 142 19.0 - 30.5-1.4 100 73 142 22.5 - 30.5-1.6 150 66 119 24.5 - 30.5-1.6 150 68 120 25.5 - 30.5-1.6 150 68 120 25.5 - 30.5-1.10 250 49 74 40.0 - 30.5-1.11 300 41 60 38.0 - 30.5-1.12 23 75 169 18.5 33.5 25.10-1.2 23 75 169	250°		25-5-L8	200	56	95	28.5	-
HOODY 255-110 250 49 73 39.5 - 25-5-112 300 42 59 34.0 - 25-5-112 300 41 59 42.5 - 30-5-12 23 81 171 20.0 - 30-5-13 100 85 142 19.0 - 30-5-14 100 73 142 22.5 - 30-5-15 150 66 119 24.5 - 30-5-16 150 68 120 25.5 - 30-5-17 200 58 95 30.5 - 30-5-18 200 57 95 28.5 - 30-5-111 300 42 60 38.0 - 30-5-111 230 70 170 18.5 33.5 25-10-11 23 70 170 18.5 33.5 25-10-13 100 67 140 <t< td=""><td></td><td>25-5-L9</td><td>250</td><td>50</td><td>74</td><td>30.0</td><td>-</td></t<>			25-5-L9	250	50	74	30.0	-
Image: Product of the second state of the s			25-5-L10	250	49	73	39.5	-
L 255-L12 300 41 59 42.5 30-5-L2 23 81 171 20.0 30-5-L2 23 82 170 20.5 30-5-L3 100 85 142 19.0 30-5-L5 150 66 119 24.5 30-5-L5 150 66 119 24.5 - 30-5-L5 150 68 120 25.5 - 30-5-L8 200 57 95 28.5 - 30-5-L9 250 49 74 40.0 - 30-5-L1 300 41 60 38.0 - 30-5-L1 200 57 95 35.0 - 30-5-L1 200 42 60 38.0 - 25-10-L3 300 41 60 38.0 - 25-10-L3 100 67 140 21.5 <td></td> <td></td> <td>25-5-L11</td> <td>300</td> <td>42</td> <td>59</td> <td>34.0</td> <td>-</td>			25-5-L11	300	42	59	34.0	-
N 30:5:L1 23 81 171 20.0 30:5:L2 23 82 170 20.5 30:5:L3 100 85 142 19.0 30:5:L3 100 73 142 22.5 30:5:L5 150 66 119 24.5 30:5:L6 150 68 120 25.5 30:5:L9 250 49 74 40.0 30:5:L1 230 49 74 40.0 30:5:L12 300 42 60 38.0 30:5:L12 300 42 60 38.0 25:10:L1 23 70 1170 18.5 33.5 25:10:L2 23 75 169 18.5 35.8 25:10:L3 100 67 140 21.5 43.0 25:10:L3 100 70 <td< td=""><td></td><td></td><td>25-5-L12</td><td>300</td><td>41</td><td>59</td><td>42.5</td><td>-</td></td<>			25-5-L12	300	41	59	42.5	-
HOODY N 30:5:L2 23 82 170 20.5			30-5-L1	23	81	171	20.0	-
HOOOD N 30.5-L3 100 85 142 19.0 - 30.5-L4 100 73 142 22.5 - 30.5-L5 150 66 119 24.5 - 30.5-L6 150 68 120 25.5 - 30.5-L7 200 58 95 30.5 - 30.5-L8 200 57 95 28.5 - 30.5-L9 250 49 74 40.0 - 30.5-L11 300 41 60 38.0 - 30.5-L12 300 42 60 38.0 - 2510-L1 23 75 169 18.5 35.8 2510-L2 23 75 169 18.5 35.8 2510-L3 100 67 119 27.0 50.3 2510-L4 100 70 142 22.0 43.6 2510-L5 150 63 <			30-5-L2	23	82	170	20.5	-
Home 30·3·1.4 1100 1/3 142 22.3 1 30·3·1.5 150 66 119 24.5 . 30·3·1.6 150 66 119 24.5 . 30·3·1.8 200 57 95 28.5 . 30·5·1.9 250 49 74 40.0 . 30·5·1.10 250 49 74 40.0 . 30·5·1.11 300 41 60 38.0 . 30·5·1.12 3000 42 60 38.0 . 25·10·1.1 23 70 170 18.5 33.5 25·10·1.2 23 75 169 18.5 35.8 25·10·1.2 23 75 169 18.5 35.8 25·10·1.4 100 67 140 21.5 43.0 25·10·1.5 150 67 119 27.0 50.3 25·10·1.8 200 58	د.		30-5-L3	100	85	142	19.0	-
N 30-5-L6 150 66 119 24.5 - 30-5-L6 150 68 120 25.5 - 30-5-L7 200 58 95 30.5 - 30-5-L8 200 57 95 28.5 - 30-5-L10 250 49 75 35.0 - 30-5-L11 300 41 60 38.0 - 30-5-L11 300 42 60 38.0 - 30-5-L12 300 42 60 38.0 - 30-5-L11 23 70 170 18.5 33.5 25-10-L2 23 75 169 18.5 35.8 25-10-L3 100 67 140 21.5 43.0 25-10-L4 100 70 142 22.0 43.6 25-10-L3 150 67 119 27.5 49.3 25-10-L10 250 48 74	rhC		30-5-L4	100	73	142	22.5	-
N 30-5-L6 130 06 120 20.3 1- 30-5-L7 200 58 95 30.5 - 30-5-L9 250 49 75 35.0 - 30-5-L9 250 49 74 40.0 - 30-5-L10 250 49 74 40.0 - 30-5-L11 300 41 60 38.0 - 30-5-L12 300 42 60 38.0 - 30-5-L11 300 41 60 38.0 - 30-5-L12 23 75 169 18.5 33.5 25-10-L1 23 70 170 18.5 33.5 25-10-L4 100 70 142 22.0 43.6 25-10-L5 150 67 119 27.0 50.3 25-10-L6 150 63 118 27.5 49.3 25-10-L12 200 58 96	00		30-5-L5	150	66	119	24.0	
N 30-5-L9 200 30 30-5 95 28.5 30-5-L8 200 57 95 28.5 30-5-L9 250 49 74 40.0 30-5-L10 250 49 74 40.0 30-5-L12 300 41 60 38.0 30-5-L12 300 42 60 38.0 30-5-L12 230 75 169 18.5 33.5 25-10-L2 23 75 169 18.5 33.5 25-10-L3 100 67 140 21.5 43.0 25-10-L4 100 70 142 22.0 43.6 25-10-L5 150 67 119 27.0 50.3 25-10-L8 200 58 96 30.5 58.2 25-10-L12 300 42 61 35.0 78.4 25-10-L13 300	×2	Ν	30-5-L6	150	68 59	120	20.5	-
N 30:5:1:5 200 37 93 28:3 1 30:5:1:9 250 49 75 35.0 - 30:5:1:0 250 49 74 40.0 - 30:5:1:1 300 41 60 38.0 - 30:5:1:12 300 42 60 38.0 - 25:10:1:2 23 75 169 18.5 35.8 25:10:1:2 23 75 169 18.5 35.6 25:10:1:3 100 67 140 21.5 43.0 25:10:1:5 150 67 119 27.0 50.3 25:10:1:6 150 63 118 27.5 49.3 25:10:1:6 150 63 118 27.5 49.3 25:10:1:1 200 57 95 30.0 61.6 25:10:1:1 300 42 61 35.0 78.4 25:10:1:1 300 42	ç		30-5-L7	200	98 57	95	30.5	
Home Sort State Sort State <td>300</td> <td></td> <td>30-5-Lo</td> <td>200</td> <td></td> <td>95 75</td> <td>20.0</td> <td></td>	300		30-5-Lo	200		95 75	20.0	
Homo 10 10 14 16 1	60		30-5-L9	250	49	75	<u> </u>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			30-5-L11	200	49	60	40.0 38.0	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			30-5-L12	300	41	60	38.0	-
$ \mathbb{N} = \mathbb{N} =$			25-10-L1	23	70	170	18.5	33.5
$\mathbb{N}_{\text{VOO}} \mathbb{N}_{\text{VOO}} \mathbb{N}_{\text{VOO}} \mathbb{N}_{\text{VOO}} \mathbb{N}_{\text{VOO}} \mathbb{N}_{\text{VOO}} \mathbb{N}_{\text{VOO}} \mathbb{I}_{\text{VOO}} $			25-10-L2	23	75	169	18.5	35.8
$\mathbb{N} = \mathbb{N} = $			25-10-L3	100	67	140	21.5	43.0
$ \begin{array}{c} \mbox{Hood} \\ \mbox{N} \\ \mbox{N} \\ \hline \begin{array}{c} 25:10\cdot1.5 \\ 25:10\cdot1.7 \\ 25:10\cdot1.7 \\ 200 \\ 25:10\cdot1.8 \\ 200 \\ 25:10\cdot1.8 \\ 200 \\ 25:10\cdot1.8 \\ 200 \\ 25:10\cdot1.9 \\ 25:0 \\ 25:10\cdot1.9 \\ 25:0 \\ 48 \\ 75 \\ 34.5 \\ 73.4 \\ 25:10\cdot1.1 \\ 25:10\cdot1.1 \\ 25:0 \\ 48 \\ 74 \\ 41.0 \\ 76.6 \\ 25:10\cdot1.1 \\ 25:10\cdot1.1 \\ 300 \\ 42 \\ 59 \\ 36.0 \\ 78.0 \\ 25:10\cdot1.1 \\ 350 \\ 32 \\ 47 \\ 48.5 \\ 82.1 \\ 30:10\cdot1.1 \\ 23 \\ 74 \\ 167 \\ 20.5 \\ 39.0 \\ 30:10\cdot1.2 \\ 25 \\ 30:10\cdot1.2 \\ 30:10\cdot1.4 \\ 100 \\ 70 \\ 140 \\ 24.5 \\ 44.7 \\ 30:10\cdot1.5 \\ 150 \\ 63 \\ 118 \\ 28.5 \\ 53.3 \\ 30:10\cdot1.4 \\ 30:10\cdot1.4 \\ 100 \\ 70 \\ 140 \\ 24.5 \\ 44.7 \\ 30:10\cdot1.5 \\ 30:10 \\ 44.0 \\ 30:10\cdot1.5 \\ 150 \\ 63 \\ 118 \\ 28.5 \\ 53.3 \\ 30:10\cdot1.6 \\ 150 \\ 63 \\ 118 \\ 28.5 \\ 53.3 \\ 30:10\cdot1.6 \\ 150 \\ 63 \\ 118 \\ 28.5 \\ 53.3 \\ 30:10\cdot1.6 \\ 30:10\cdot1.6 \\ 150 \\ 63 \\ 118 \\ 28.5 \\ 53.3 \\ 30:10\cdot1.6 \\ 30:10\cdot1.6 \\ 150 \\ 63 \\ 118 \\ 28.5 \\ 73.7 \\ 30:10\cdot1.1 \\ 30:0 \\ 41 \\ 60 \\ 37.0 \\ 80.9 \\ 30:10\cdot1.1 \\ 350 \\ 31 \\ 46 \\ 37.5 \\ 80.9 \\ 30:10\cdot1.1 \\ 350 \\ 31 \\ 49 \\ 32.5 \\ 77 \\ 7 \\ \end{array}$			25-10-L4	100	70	142	22.0	43.6
$ { { { N} } } { { N} } { { [{ \frac{{ 25 \cdot 10 \cdot L6 }{ 25 \cdot 10 \cdot L7 } 200 }{ 25 \cdot 10 \cdot L7 } 200 } 57 } { 57 } { 95 } { 30.0 } { 61.6 } { 30.5 } { 58.2 } { 30.0 } { 61.6 } { 30.5 } { 58.2 } { 25 \cdot 10 \cdot L8 } { 200 } { 58 } { 96 } { 30.5 } { 58.2 } { 25 \cdot 10 \cdot L9 } { 250 } { 48 } { 74 } { 41.0 } { 76.6 } { 25 \cdot 10 \cdot L10 } { 250 } { 48 } { 74 } { 41.0 } { 76.6 } { 25 \cdot 10 \cdot L12 } { 300 } { 42 } { 61 } { 35.0 } { 78.4 } { 25 \cdot 10 \cdot L12 } { 300 } { 42 } { 59 } { 36.0 } { 78.0 } { 78.0 } { 25 \cdot 10 \cdot L13 } { 350 } { 32 } { 47 } { 46.5 } { 81.2 } { 25 \cdot 10 \cdot L13 } { 350 } { 32 } { 47 } { 46.5 } { 81.2 } { 25 \cdot 10 \cdot L1 } { 23 } { 74 } { 167 } { 20.5 } { 39.0 } { 30 \cdot 10 \cdot L1 } { 23 } { 74 } { 167 } { 20.5 } { 39.0 } { 30 \cdot 10 \cdot L2 } { 23 } { 73 } { 167 } { 21.5 } { 40.8 } { 30 \cdot 10 \cdot L2 } { 23 } { 73 } { 167 } { 21.5 } { 40.8 } { 30 \cdot 10 \cdot L4 } { 100 } { 70 } { 140 } { 24.5 } { 44.7 } { 30 \cdot 10 \cdot L4 } { 100 } { 70 } { 140 } { 24.5 } { 44.7 } { 30 \cdot 10 \cdot L4 } { 100 } { 70 } { 140 } { 24.5 } { 44.7 } { 30 \cdot 10 \cdot L4 } { 100 } { 70 } { 140 } { 24.5 } { 44.7 } { 30 \cdot 10 \cdot L4 } { 100 } { 52 } { 92 } { 32.5 } { 68.7 } { 30 \cdot 10 \cdot L4 } { 100 } { 52 } { 92 } { 32.5 } { 68.7 } { 30 \cdot 10 \cdot L4 } { 30 \cdot 10 \cdot L4 } { 100 } { 53 } { 93 } { 29.0 } { 64.0 } { 30 \cdot 10 \cdot L4 } { 300 } { 41 } { 60 } { 41.0 } { 79.4 } { 30 \cdot 10 \cdot L1 } { 300 } { 41 } { 60 } { 41.0 } { 79.4 } { 30 \cdot 10 \cdot L1 } { 300 } { 41 } { 60 } { 37.0 } { 80.9 } { 30 \cdot 10 \cdot L1 } { 350 } { 31 } { 46 } { 37.5 } { 80.9 } { 30 \cdot 10 \cdot L1 } { 350 } { 31 } { 46 } { 37.5 } { 80.9 } { 30 \cdot 10 \cdot L1 } { 350 } { 31 } { 46 } { 37.5 } { 80.9 } { 30 \cdot 10 \cdot L1 } { 350 } { 33 } { 49 } { 32.5 } { 77.7 } { 77 } $	hr		25-10-L5	150	67	119	27.0	50.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00		25-10-L6	150	63	118	27.5	49.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00		25-10-L7	200	57	95	30.0	61.6
Yoo 25·10·L9 250 48 75 34.5 73.4 25·10·L10 250 48 74 41.0 76.6 25·10·L11 300 42 61 35.0 78.4 25·10·L12 300 42 59 36.0 78.0 25·10·L13 350 32 47 46.5 81.2 25·10·L14 350 32 47 48.5 82.1 25·10·L14 350 32 47 48.5 82.1 30·10·L1 23 74 167 20.5 39.0 30·10·L2 23 73 167 21.5 40.8 30·10·L3 100 63 139 24.0 44.0 30·10·L4 100 70 140 24.5 44.7 30·10·L5 150 63 118 28.5 53.3 30·10·L6 150 63 118 28.5 73.7 30·10·L8 200	$\times 1$	N	25-10-L8	200	58	96	30.5	58.2
Y 25:10·L10 250 48 74 41.0 76.6 25:10·L11 300 42 61 35.0 78.4 25:10·L12 300 42 59 36.0 78.0 25:10·L13 350 32 47 46.5 81.2 25:10·L14 350 32 47 48.5 82.1 30:10·L1 23 74 167 20.5 39.0 30:10·L2 23 73 167 21.5 40.8 30:10·L3 100 63 139 24.0 44.0 30:10·L4 100 70 140 24.5 44.7 30:10·L5 150 63 118 28.5 53.3 30:10·L6 150 63 118 28.5 53.3 30:10·L7 200 52 92 32.5 68.7 30:10·L10 250 47 74 35.5 73.7 30:10·L11 300	0°C		25-10-L9	250	48	75	34.5	73.4
${\tt H}_{\rm V} = \begin{pmatrix} 25\cdot 10\cdot L11 & 300 & 42 & 61 & 35.0 & 78.4 \\ 25\cdot 10\cdot L12 & 300 & 42 & 59 & 36.0 & 78.0 \\ 25\cdot 10\cdot L13 & 350 & 32 & 47 & 46.5 & 81.2 \\ 25\cdot 10\cdot L14 & 350 & 32 & 47 & 48.5 & 82.1 \\ \hline & 30\cdot 10\cdot L1 & 23 & 74 & 167 & 20.5 & 39.0 \\ \hline & 30\cdot 10\cdot L2 & 23 & 73 & 167 & 21.5 & 40.8 \\ \hline & 30\cdot 10\cdot L3 & 100 & 63 & 139 & 24.0 & 44.0 \\ \hline & 30\cdot 10\cdot L4 & 100 & 70 & 140 & 24.5 & 44.7 \\ \hline & 30\cdot 10\cdot L5 & 150 & 63 & 118 & 28.5 & 53.3 \\ \hline & 30\cdot 10\cdot L6 & 150 & 63 & 118 & 28.5 & 53.3 \\ \hline & 30\cdot 10\cdot L8 & 200 & 52 & 92 & 32.5 & 68.7 \\ \hline & 30\cdot 10\cdot L8 & 200 & 53 & 93 & 29.0 & 64.0 \\ \hline & 30\cdot 10\cdot L9 & 250 & 47 & 74 & 35.5 & 73.7 \\ \hline & 30\cdot 10\cdot L10 & 250 & 45 & 74 & 35.0 & 75.7 \\ \hline & 30\cdot 10\cdot L11 & 300 & 41 & 60 & 41.0 & 79.4 \\ \hline & 30\cdot 10\cdot L12 & 300 & 41 & 60 & 37.0 & 80.9 \\ \hline & 30\cdot 10\cdot L13 & 350 & 31 & 46 & 37.5 & 80.9 \\ \hline & 30\cdot 10\cdot L14 & 350 & 33 & 49 & 32.5 & 77.7 \\ \hline \end{pmatrix}$	25(25-10-L10	250	48	74	41.0	76.6
HOOD 25·10·L12 300 42 59 36.0 78.0 25·10·L13 350 32 47 46.5 81.2 25·10·L14 350 32 47 48.5 82.1 30·10·L1 23 74 167 20.5 39.0 30·10·L2 23 73 167 21.5 40.8 30·10·L3 100 63 139 24.0 44.0 30·10·L4 100 70 140 24.5 44.7 30·10·L5 150 63 120 30.0 53.3 30·10·L6 150 63 118 28.5 53.3 30·10·L7 200 52 92 32.5 68.7 30·10·L9 250 47 74 35.5 73.7 30·10·L9 250 47 74 35.5 73.7 30·10·L9 250 45 74 35.0 75.7 30·10·L11 300			25-10-L11	300	42	61	35.0	78.4
Image: Normal base in the image in the image. Image: Image in the image. Image: Image in the image. Image in the image in the image in the image in the image. Image in the image. Image in the image in the image in the image in the image. Image in the image in the image in the image in the image. Image in the image in the image in the image. Image in the image in the image in the image in the image. Image in the			25-10-L12	300	42	59	36.0	78.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			25-10-L13	350	32	47	46.5	81.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			25-10-L14	350	32	47	48.5	82.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			30-10-L1	23	74	167	20.5	39.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			30-10-L2	23	73	167	21.5	40.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			30-10-L3	100	63	139	24.0	44.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ч		30-10-L4	100	70	140	24.5	44.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 h		30-10-L5	150	63	120	30.0	53.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00		30-10-L6	150	63	118	28.5	53.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $:10	Ν	30-10-L7	200	52	92	32.5	68.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ç		30-10-L8	200	53	93	29.0	64.0
$\tilde{\overline{\mathbf{x}}} = \begin{bmatrix} 30^{\circ}10^{\circ}110 & 230 & 45 & 74 & 35.0 & 75.7 \\ 30^{\circ}10^{\circ}111 & 300 & 41 & 60 & 41.0 & 79.4 \\ 30^{\circ}10^{\circ}112 & 300 & 41 & 60 & 37.0 & 80.9 \\ 30^{\circ}10^{\circ}113 & 350 & 31 & 46 & 37.5 & 80.9 \\ 30^{\circ}10^{\circ}114 & 350 & 33 & 49 & 32.5 & 77.7 \\ \end{bmatrix}$	00		30-10-L9	250	47	74	30.0	13.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30		20-10-L1U	200	40	60	30.U 41.0	10.1
30·10·L13 350 41 60 37.0 80.9 30·10·L13 350 31 46 37.5 80.9 30·10·L14 350 33 49 32.5 77.7			30-10-L11 30-10-L19	300	41 /1	60	41.0 27.0	80.0
30-10-L14 350 33 49 32.5 77.7			30-10-L12	350	41 91	46	375	80.9
			30-10-L14	350	33	49	32.5	77.7

表 11 BC-A6N01長時間時効材の引張試験結果

 図 42 BC-A6N01の 0.2%耐力に及ぼす 250℃での長時間時効の影響 (横軸 0hr は初期材を示す)

(横軸 0hr は初期材を示す)

 図 44 BC-A6N01の引張強さに及ぼす 250℃での長時間時効の影響 (横軸 0hr は初期材を示す)

(横軸 0hr は初期材を示す)

時	/#•		計殿		引 張 試	験 結 果	
効	武	試験片	温度		北市共大		44-10
処理	材	符号	(°C)	0.2%时刀	り 張 強 さ (MD-)		校 り (0/)
垤				(MPa)	(MPa)	(%)	(%)
		A1-251-1	23	86	187	22.0	57.9
		A1-251-2	23	85	183	21.5	56.4
		A1-251-3	100	89	179	19.0	46.6
		A1-251-4	100	87	179	19.5	53.8
		A1-251-5	150	85	158	32.5	60.2
		A1-251-6	150	88	160	33.0	64.4
	Δ	A1-251-7	200	78	118	51.0	83.0
	A	A1-251-8	200	78	117	52.0	81.3
		A1-251-9	250	65	88	49.5	90.8
		A1-251-10	250	65	88	46.5	89.9
		A1-251-11	300	46	64	58.5	94.2
		A1-251-12	300	47	66	57.5	93.9
		A1-251-13	350	31	48	51.5	95.6
		A1-251-14	350	31	49	65.0	95.6
		B1-251-1	23	82	181	22.0	56.8
		B1-251-2	23	82	178	21.5	53.1
		B1-251-3	100	85	173	20.0	52.2
		B1-251-4	100	84	172	21.0	52.4
hr		B1-251-5	150	81	153	29.5	60.6
[00]	В	B1-251-6	150	83	154	30.5	61.6
10		B1-251-7	200	81	123	54.0	82.3
×		B1-251-8	200	78	120	50.5	80.6
000		B1-251-9	250	64	89	49.0	88.2
25		B1-251-10	250	64	89	47.5	88.1
		B1-251-11	300	47	64	69.5	94.1
		B1-251-12	300	46	66	85.0	95.0
		B1-251-13	350	30	47	67.5	96.0
		B1-251-14	350	30	47	58.5	94.9
		C1-251-1	23	84	186	21.5	51.4
		C1-251-2	23	83	183	22.0	52.7
		C1-251-3	100	86	178	20.5	50.1
		C1-251-4	100	89	177	20.0	50.5
		C1-251-5	150	85	157	30.5	60.6
		C1-251-6	150	86	159	29.5	57.4
	G	C1-251-7	200	83	126	49.0	83.6
	C	C1-251-8	200	103	123	53.5	79.1
		C1-251-9	250	65	91	52.5	89.3
		C1-251-10	250	66	90	50.0	89.4
		C1-251-11	300	48	66	71.0	93.9
		C1-251-12	300	47	67	65.0	92.3
		C1-251-13	350	31	50	69.0	96.4
		C1-251-14	350	31	48	81.5	96.2

表 12 MB-A3004 長時間時効材(250℃×1000hr)の引張試験結果

時	<i>(</i> # -		45 FA		引 張 試	験 結 果	
効	供試	試験片	武 映 担 庄				(1)
処	材	符号	(°C)	0.2%耐力	引張強さ	伸び	彩り
埋			(0)	(MPa)	(MPa)	(%)	(%)
		A5-254-1	23	88	190	23.1	53.4
		A5-254-2	23	83	182	24.3	56.4
		A5-254-3	100	87	175	21.2	54.1
		A5-254-4	100	88	177	20.8	47.8
		A5-254-5	150	84	157	34.6	63.4
		A5-254-6	150	89	163	32.7	60.6
	۸	A5-254-7	200	78	118	50.2	80.6
	A	A5-254-8	200	77	118	51.9	79.8
		A5-254-9	250	65	90	41.6	85.0
		A5-254-10	250	64	88	56.9	88.9
		A5-254-11	300	47	65	55.4	92.6
		A5-254-12	300	45	64	74.6	93.9
		A5-254-13	350	31	50	64.7	94.5
		A5-254-14	350	32	49	53.7	94.8
		B5-254-1	23	80	177	22.3	54.8
		B5-254-2	23	78	175	24.4	56.8
		B5-254-3	100	84	169	21.4	52.4
		B5-254-4	100	84	168	21.4	53.1
hr		B5-254-5	150	81	151	29.3	60.3
00	р	B5-254-6	150	81	153	28.1	58.1
50		B5-254-7	200	77	120	56.3	80.0
×	в	B5-254-8	200	79	124	40.9	77.2
$0^{\circ}0$		B5-254-9	250	62	86	55.7	86.7
25		B5-254-10	250	62	86	61.8	88.4
		B5-254-11	300	44	63	73.9	93.8
		B5-254-12	300	46	64	55.0	92.0
		B5-254-13	350	32	49	45.9	93.1
		B5-254-14	350	31	47	97.8	95.9
		C5-254-1	23	81	183	22.6	55.8
		C5-254-2	23	82	180	23.0	54.9
		C5-254-3	100	84	173	19.6	49.1
		C5-254-4	100	83	172	19.9	51.7
		C5-254-5	150	82	157	28.5	57.1
		C5-254-6	150	81	157	28.0	62.2
	a	C5-254-7	200	78	122	48.4	78.3
	C	C5-254-8	200	80	124	45.8	80.4
		C5-254-9	250	65	89	52.9	88.5
		C5-254-10	250	64	89	43.5	88.0
		C5-254-11	300	47	65	61.1	93.8
		C5-254-12	300	46	65	70.0	92.2
		C5-254-13	350	31	48	79.7	94.8
		C5-254-14	350	31	48	80.1	95.6

表 13 MB-A3004 長時間時効材(250℃×5000hr)の引張試験結果

時	/11		-1. h. m7A		引 張 試	験 結 果	
効処	供試	試験片	試験 温度	0.9%耐力	引張強さ	伸び	絞り
理	材	行方	(°C)	(MPa)	(MPa)	(%)	(%)
		A2-2510-1	23	88	187	21.0	57.4
		A2-2510-2	23	83	181	21.5	58.4
		A2-2510-3	100	85	175	20.0	52.4
		A2-2510-4	100	85	175	20.5	49.4
		A2-2510-5	150	87	161	29.0	63.7
		A2-2510-6	150	85	156	30.5	64.9
	Δ	A2-2510-7	200	78	120	47.0	82.6
	11	A2-2510-8	200	78	119	34.5	80.0
		A2-2510-9	250	63	88	45.0	89.2
		A2-2510-10	250	64	87	38.5	87.7
		A2-2510-11	300	45	65	61.0	93.6
		A2-2510-12	300	45	64	70.5	94.6
		A2-2510-13	350	29	45	55.0	94.5
		A2-2510-14	350	30	47	85.0	96.7
		B2-2510-1	23	82	178	21.0	57.0
		B2-2510-2	23	80	177	22.5	55.9
		B2-2510-3	100	81	168	20.5	50.3
		B2-2510-4	100	82	168	21.0	52.4
hr		B2-2510-5	150	80	152	30.0	59.2
00	D	B2-2510-6	150	78	152	28.0	57.9
00		B2-2510-7	200	75	118	32.5	77.2
X	в	B2-2510-8	200	75	119	33.5	78.1
0°C		B2-2510-9	250	61	86	37.5	84.8
25		B2-2510-10	250	60	84	41.5	86.5
		B2-2510-11	300	44	63	53.5	91.2
		B2-2510-12	300	44	63	53.0	91.4
		B2-2510-13	350	29	46	46.0	93.8
		B2-2510-14	350	28	45	52.5	95.3
		C2-2510-1	23	83	183	20.5	56.3
		C2-2510-2	23	83	181	22.0	53.6
		C2-2510-3	100	84	172	19.5	48.9
		C2-2510-4	100	84	171	19.0	50.3
		C2-2510-5	150	82	155	29.0	58.4
		C2-2510-6	150	82	155	27.5	58.2
		C2-2510-7	200	78	122	38.5	77.9
	С	C2-2510-8	200	78	119	36.0	78.6
		C2-2510-9	250	63	89	54.5	88.4
		C2-2510-10	250	63	88	48.5	86.5
		B2-2510-11	300	46	66	72.0	93.1
		B2-2510-12	300	44	64	71.0	93.8
		B2-2510-13	350	31	47	60.5	93.9
		B2-2510-14	350	32	49	57.5	94.3

表 14 MB-A3004長時間時効材(250℃×10000hr)の引張試験結果

時					引張試	験 結 果	
効	供試	試験片	試験 沮庶				
処	材	符号	(°C)	0.2%耐力	引張強さ	伸び	絞り
埋	13			(MPa)	(MPa)	(%)	(%)
		A3-301-1	23	84	190	22.0	52.4
		A3-301-2	23	83	184	24.0	57.3
		A3-301-3	100	87	181	18.0	42.5
		A3-301-4	100	85	180	18.5	42.7
		A3-301-5	150	84	167	28.5	55.3
		A3-301-6	150	87	172	25.5	54.6
	۸	A3-301-7	200	79	126	51.5	83.5
	A	A3-301-8	200	80	125	52.5	83.4
		A3-301-9	250	64	91	44.5	90.2
		A3-301-10	250	65	90	48.0	90.9
		A3-301-11	300	46	65	73.5	94.6
		A3-301-12	300	46	67	47.5	93.4
		A3-301-13	350	30	46	50.5	95.8
		A3-301-14	350	30	46	55.0	96.0
		B3-301-1	23	79	181	22.0	53.1
		B3-301-2	23	78	178	23.0	54.0
		B3-301-3	100	81	174	19.0	44.3
		B3-301-4	100	80	173	18.5	44.7
LL.		B3-301-5	150	78	161	25.5	54.3
10h		B3-301-6	150	79	163	25.5	51.8
10(В	B3-301-7	200	79	130	52.5	82.7
×		B3-301-8	200	76	124	53.5	77.5
000		B3-301-9	250	62	90	57.0	88.3
30		B3-301-10	250	64	89	55.5	88.5
		B3-301-11	300	44	63	47.5	92.4
		B3-301-12	300	44	65	50.5	92.8
		B3-301-13	350	29	45	94.0	96.4
		B3-301-14	350	29	46	74.5	95.8
		C3-301-1	23	81	184	22.0	47.6
		C3-301-2	23	79	182	22.5	53.9
		C3-301-3	100	81	176	18.0	40.2
		C3-301-4	100	80	175	17.5	42.2
		C3-301-5	150	81	164	27.5	55.3
		C3-301-6	150	85	167	26.5	57.6
	G	C3-301-7	200	79	128	55.5	83.8
	C	C3-301-8	200	77	124	53.5	81.6
		C3-301-9	250	65	92	52.5	89.4
		C3-301-10	250	63	89	43.5	87.7
		C3-301-11	300	44	65	51.0	91.7
		C3-301-12	300	44	65	53.0	92.2
		C3-301-13	350	30	48	71.0	95.0
		C3-301-14	350	30	48	86.5	95.3

表 15 MB-A3004 長時間時効材(300℃×1000hr)の引張試験結果

時	伳		計驗		引 張 試	験 結 果	
効	試	試験片	温度		日電路を	仲文》	休り
処理	材	符号	(°C)	0.2%⊪)) (MPa)	り 坂 蚀 e (MPa)	(%)	版(%)
12				(111 a)	(mir a)	(707	(/0 /
		A6-304-1	23	86	190	23.0	56.1
		A6-304-2	23	84	185	22.1	54.8
		A6-304-3	100	86	182	18.5	45.6
		A6-304-4	100	86	182	19.7	44.9
		A6-304-5	150	86	175	21.3	51.5
		A6-304-6	150	88	176	24.1	58.2
	Δ	A6-304-7	200	79	128	39.6	77.4
		A6-304-8	200	82	131	39.1	74.9
		A6-304-9	250	64	89	51.8	89.4
		A6-304-10	250	65	91	48.0	89.4
		A6-304-11	300	45	63	52.4	92.2
		A6-304-12	300	44	63	59.2	93.4
		A6-304-13	350	31	45	45.7	95.6
		A6-304-14	350	30	46	49.9	94.7
		B6-304-1	23	83	182	22.0	52.4
		B6-304-2	23	82	180	22.0	56.1
		B6-304-3	100	83	176	19.1	52.2
		B6-304-4	100	80	174	19.6	46.0
ır		B6-304-5	150	80	166	22.9	53.8
100	р	B6-304-6	150	80	166	23.0	47.4
50		B6-304-7	200	79	130	35.3	75.6
× O	D	B6-304-8	200	80	133	36.6	74.5
°00		B6-304-9	250	60	88	56.7	89.1
3(B6-304-10	250	62	87	52.5	88.4
		B6-304-11	300	44	64	60.8	92.5
		B6-304-12	300	45	64	68.9	93.2
		B6-304-13	350	30	45	63.1	94.6
		B6-304-14	350	30	45	79.1	94.7
		C6-304-1	23	86	188	22.0	54.1
		C6-304-2	23	85	183	21.8	52.4
		C6-304-3	100	84	179	18.7	53.8
		C6-304-4	100	83	177	18.9	39.4
		C6-304-5	150	81	168	26.6	52.9
		C6-304-6	150	82	168	24.7	51.2
	C	C6-304-7	200	80	129	39.5	74.1
	U	C6-304-8	200	81	133	36.3	74.5
		C6-304-9	250	63	88	51.0	87.7
		C6-304-10	250	63	88	46.8	85.4
		C6-304-11	300	46	66	42.0	90.8
		C6-304-12	300	44	64	46.1	90.9
		C6-304-13	350	30	47	86.1	95.8
		C6-304-14	350	31	48	79.5	93.8

表 16 MB-A3004 長時間時効材(300℃×5000hr)の引張試験結果

時					引張試	験 結 果	
効処	供試	試験片	試験 温度	0.2%耐力	引張強さ	伸び	絞り
理	材	11 7	(°C)	(MPa)	(MPa)	(%)	(%)
		A4-3010-1	23	86	193	22.0	59.4
		A4-3010-2	23	82	186	22.5	53.9
		A4-3010-3	100	84	181	19.5	44.9
		A4-3010-4	100	84	181	19.5	36.2
		A4-3010-5	150	87	176	26.5	55.4
		A4-3010-6	150	84	173	26.5	53.6
	٨	A4-3010-7	200	78	128	53.0	78.0
	А	A4-3010-8	200	77	128	55.5	78.0
		A4-3010-9	250	62	88	85.0	93.2
		A4-3010-10	250	62	87	75.5	92.6
		A4-3010-11	300	41	61	92.5	96.6
		A4-3010-12	300	42	62	85.5	96.2
		A4-3010-13	350	28	44	54.0	96.5
		A4-3010-14	350	29	46	83.0	97.5
		B4-3010-1	23	78	183	23.5	50.5
		B4-3010-2	23	77	181	22.5	53.1
		B4-3010-3	100	81	174	18.5	42.0
		B4-3010-4	100	80	173	19.0	41.3
hr	D	B4-3010-5	150	79	166	25.0	53.2
00		B4-3010-6	150	79	166	25.0	55.1
00		B4-3010-7	200	76	128	54.0	77.9
×	В	B4-3010-8	200	76	128	54.0	76.8
0°C		B4-3010-9	250	59	86	67.0	90.4
30		B4-3010-10	250	58	84	70.0	91.5
		B4-3010-11	300	42	62	38.0	92.9
		B4-3010-12	300	41	61	45.5	92.1
		B4-3010-13	350	28	44	73.5	96.8
		B4-3010-14	350	27	43	91.5	97.4
		C4-3010-1	23	81	187	22.5	56.0
		C4-3010-2	23	80	185	22.0	56.1
		C4-3010-3	100	81	177	18.5	42.0
		C4-3010-4	100	80	176	20.0	42.0
		C4-3010-5	150	80	167	26.0	44.9
		C4-3010-6	150	79	169	25.0	53.1
	C	C4-3010-7	200	77	128	49.5	77.7
	U	C4-3010-8	200	77	127	49.5	77.7
		C4-3010-9	250	59	85	75.0	92.1
		C4-3010-10	250	59	84	77.5	92.4
		C4-3010-11	300	41	61	86.5	95.0
		C4-3010-12	300	41	61	74.0	94.7
		C4-3010-13	350	30	45	39.0	95.1
		C4-3010-14	350	29	45	49.0	95.8

表 17 MB-A3004長時間時効材(300℃×10000hr)の引張試験結果

図 49 MB-A3004 の引張強さに及ぼす長時間時効の影響

図 51 MB-A3004の 0.2%耐力に及ぼす 250℃での長時間時効の影響 (横軸 0hr は初期材を示す)

 図 52 MB-A3004の 0.2%耐力に及ぼす 300℃での長時間時効の影響 (横軸 0hr は初期材を示す)

 図 53 MB-A3004の引張強さに及ぼす 250℃での長時間時効の影響 (横軸 0hr は初期材を示す)

図 54 MB-A3004の引張強さに及ぼす 300℃での長時間時効の影響 (横軸 0hr は初期材を示す)

(横軸 0hr は初期材を示す)

 図 56 MB-A3004の伸びに及ぼす 300℃での長時間時効の影響 (横軸 0hr は初期材を示す)

6.1.2 衝撃特性

(1)BC-A6N01

表 18 に初期材及び 250℃または 300℃で 1000hr、5000hr 及び 10000hr の長時間時効 を行った BC-A6N01 の-40℃における V ノッチシャルピー衝撃試験結果を示す。長時間時 効に伴う引張特性の変化を把握するために、これらをグラフ化したものを以下に示す。

図 57 と図 58 にはそれぞれ 250℃と 300℃で長時間時効を行った BC-A6N01の - 40℃ における V ノッチシャルピー衝撃試験における衝撃値を示す。採取方向依存性は認められ たものの、長時間時効に伴う衝撃値の変化はほとんど認められなかった。

図 59 と図 60 にそれぞれ 250℃と 300℃で長時間時効を行った BC-A6N01 の - 40℃に おける V ノッチシャルピー衝撃試験における横膨出量を示す。採取方向依存性は認められ たものの、長時間時効に伴う衝撃値の変化はほとんど認められなかった。

(2)MB-A3004

表 19 から表 21 に初期材及び 250℃または 300℃で 1000hr、5000hr 及び 10000hr の 長時間時効を行った MB-A3004 の - 40℃における V ノッチシャルピー衝撃試験結果を示 す。長時間時効に伴う引張特性の変化を把握するために、これらをグラフ化したものを以 下に示す。

図 61 と図 62 にはそれぞれ 250℃と 300℃で長時間時効を行った MB-A3004 の - 40℃ における V ノッチシャルピー衝撃試験における衝撃値を示す。採取方向依存性は認められたものの、長時間時効に伴う衝撃値の変化はほとんど認められなかった。

図 63 と図 64 にそれぞれ 250℃と 300℃で長時間時効を行った MB-A3004 の - 40℃に おける V ノッチシャルピー衝撃試験における横膨出量を示す。採取方向依存性は認められ たものの、長時間時効に伴う衝撃値の変化はほとんど認められなかった。

試験片符号	供試材	時効条件	採取方向	試験 温度 (℃)	吸収エ ネルギ ー(J)	衝撃値 (J/cm ²)	横膨出 量(mm)
D1				- 40	22	28	1.21
D2			L-S 方向	- 40	22	28	1.25
D3				- 40	20	25	1.18
E1	-	なし		- 40	26	33	1.04
E2	-		T-S 方向	- 40	26	33	0.98
 E3			- ~ / • • •	- 40	26	33	1.02
25-1-L1	-			- 40	22	28	1.22
25-1-L2	-		L-S 方向	- 40	22	28	1.21
25-1-L3			- ~ / / / /	- 40	22	28	1.38
25-1-T1	-	250° C×1000hr		- 40	18	25	1.4
25-1-T2			T-S 方向	- 40	16	20	1.35
25-1-T3				- 40	16	20	1.42
30-1-L1				- 40	22	28	1.25
30-1-L2			L-S 方向	- 40	24	30	1.22
30-1-L3				- 40	20	25	1.33
30-1-T1		300°C×1000hr	T-S 方向	- 40	18	22	1.46
30-1-T2				- 40	18	22	1.47
30-1-T3				- 40	18	22	1.44
25-5-L1		$250^\circ C imes 5000 hr$	L-S 方向	- 40	22	28	1.21
25-5-L2				- 40	22	28	1.19
25-5-L3	N			- 40	22	28	1.5
25-5-T1			T-S 方向	- 40	28	35	0.98
25-5-T2				- 40	28	35	0.91
25-5-T3				- 40	28	35	0.94
30-5-L1				- 40	22	28	1.46
30-5-L2			L-S 方向	- 40	24	25	1.22
30-5-L3		200%		- 40	22	28	1.14
30-T-T1		500 C × 500011		- 40	28	35	0.94
30-T-T2	_		T-S 方向	- 40	28	35	0.96
30-T-T3	_			- 40	28	35	1
25-10-L1				- 40	21	27	1.18
25-10-L2			L-S 方向	- 40	21	27	1.16
25-10-L3	_	$250^\circ C$		- 40	21	27	1.18
25-10-T1	_	×10000hr		- 40	26	33	1.01
25-10-T2	_		T-S 方向	- 40	26	33	1.05
25-10-T3				- 40	26	33	1.02
30-10-L1	_			- 40	21	27	1.17
30-10-L2	4		L-S 方向	- 40	21	27	1.28
30-10-L3	4	300℃		- 40	21	27	1.18
30-10-T1	-	×10000hr	m c ±	- 40	29	36	1.08
30-10-T2	4		T-S 方向	- 40	29	36	1.03
30-10-T3				- 40	29	36	0.96

表 18 BC-A6N01 の V ノッチシャルピー衝撃試験結果一覧

無断複製・転載禁止

図 57 BC-A6N01の - 40℃における衝撃特性に及ぼす長時間時効(250℃)の影響
 Vノッチシャルピー衝撃試験における衝撃値

図 58 BC-A6N01の - 40℃における衝撃特性に及ぼす長時間時効(300℃)の影響
 Vノッチシャルピー衝撃試験における衝撃値

図 59 BC-A6N01の-40℃における衝撃特性に及ぼす長時間時効(250℃)の影響
 V ノッチシャルピー衝撃試験における横膨出量

図 60 BC-A6N01の-40℃における衝撃特性に及ぼす長時間時効(300℃)の影響
 V ノッチシャルピー衝撃試験における横膨出量

				-			-
				試験	吸収	衝擊值	横膨出
試験片符号	供試材	時効条件	採取方向	温度	エネルキ・ー	(J/cm^2)	量(mm)
				(°C)	(J)	(0.0)	
IL1	-			- 40	62	78	2.62
IL2	-		L-S 方向	- 40	65	81	2.88
IL3		<i>te</i> 1.		- 40	62	78	2.76
IT1		120		- 40	44	55	1.64
IT2			T-S 方向	- 40	44	55	1.86
IT3			<u> </u>	- 40	46	58	1.91
A1-251-21				- 40	71	88	1.63
A1-251-22			L-S 方向	- 40	68	85	1.86
A1-251-23		250°C×1000hr		- 40	68	85	2.05
A1-251-24		250 C × 1000 nr		- 40	54	68	1.76
A1-251-25			T-S 方向	- 40	54	68	1.76
A1-251-26				- 40	57	71	1.81
A3-301-21			L-S 方向	- 40	60	74	1.69
A3-301-22				- 40	60	74	1.79
A3-301-23		300℃×1000hr		- 40	60	74	1.85
A3-301-24			T-S 方向	- 40	52	64	1.75
A3-301-25				- 40	52	64	1.72
A3-301-26				- 40	52	64	1.80
A5-254-21	A		L-S 方向	- 40	68	85	1.60
A5-254-22		$250^\circ C imes 5000 hr$		- 40	68	85	1.73
A5-254-23				- 40	62	78	1.80
A5-254-24			T-S 方向	- 40	54	68	1.69
A5-254-25				- 40	54	68	1.68
A5-254-26				- 40	52	64	1.61
A6-304-21				- 40	57	71	1.63
A6-304-22			L-S 方向	- 40	54	68	1.70
A6-304-23		200°C x 5000h		- 40	54	68	1.79
A6-304-24		300 C × 5000nr	T-S 方向	- 40	44	55	1.65
A6-304-25				- 40	46	58	1.69
A6-304-26				- 40	44	55	1.56
A2-2510-24]	25000		- 40	57	71	1.59
A2-2510-25]	250°C	T-S 方向	- 40	57	71	1.69
A2-2510-26	1	×10000hr		- 40	57	71	1.60
A4-3010-24	1	200%		- 40	49	61	1.48
A4-3010-25	1	300 C	T-S 方向	- 40	46	58	1.52
A4-3010-26		×10000hr		- 40	46	58	1.59

表 19 MB-A3004 供試材 Aの V ノッチシャルピー衝撃試験結果一覧

試験片符号	供試材	時効条件	採取方向	試験 温度 (℃)	吸収 ^{エネルキ゛ー} (J)	衝撃値 (J/cm²)	横膨出 量(mm)
ILB1				- 40	54	68	2.53
ILB2			L-S 方向	- 40	60	74	2.58
ILB3		<i>t</i> > 1		- 40	60	74	2.70
ITB1		74 U		- 40	44	55	2.25
ITB2			T-S 方向	- 40	44	55	2.09
ITB3				- 40	44	55	2.11
B1-251-21				- 40	62	78	1.92
B1-251-22			L-S 方向	- 40	60	74	2.21
B1-251-23		250°C × 1000h -		- 40	60	74	1.83
B1-251-24		250 C×1000nr		- 40	52	64	1.66
B1-251-25			T-S 方向	- 40	52	64	1.55
B1-251-26				- 40	52	64	1.67
B3-301-21		300℃×1000hr	L-S 方向	- 40	54	68	1.78
B3-301-22				- 40	60	74	2.38
B3-301-23				- 40	57	71	1.87
B3-301-24			T-S 方向	- 40	49	61	1.58
B3-301-25				- 40	46	58	1.55
B3-301-26	Б			- 40	46	58	1.61
B5-254-21	Б		L-S 方向	- 40	57	71	1.86
B5-254-22				- 40	62	78	2.06
B5-254-23		250°C×5000hr		- 40	60	74	1.86
B5-254-24		250 C × 5000 nr	T-S 方向	- 40	49	61	1.61
B5-254-25				- 40	49	61	1.57
B5-254-26				- 40	49	61	1.55
B6-304-21			L-S 方向	- 40	54	68	1.80
B6-304-22				- 40	57	71	2.05
B6-304-23		200°C×5000hm		- 40	54	68	1.89
B6-304-24		300 C × 3000 m	T-S 方向	- 40	44	55	1.54
B6-304-25				- 40	46	58	1.58
B6-304-26				- 40	44	55	1.49
B2-2510-24		250°C		- 40	52	64	1.64
B2-2510-25		200 U x10000hr	T-S 方向	- 40	52	64	1.59
B2-2510-26		×1000011r		- 40	49	61	1.52
B4-3010-24		200%		- 40	44	55	1.56
B4-3010-25		300 C	T-S 方向	- 40	44	55	1.48
B4-3010-26		~10000hr		- 40	46	58	1.46

表 20 MB-A3004 供試材 Bの V ノッチシャルピー衝撃試験結果一覧

試験片符号 試験 (民)供試材時効条件採取方向試験 (\mathbb{R} (\mathbb{R})吸収 (\mathbb{R})新幹位 (\mathbb{R})横膨出 量(mm)ILC1ILC2								
試験庁符劳供試材時効条件操取方向温度 $2404 - (J/em^2)$ 量(mm)ILC1(C)(J)(J) (J/em^2) 量(mm)ILC2ILC3 $\lambda \cup$ $\lambda \cup$ 57712.77ILC3ITC1 $\lambda \cup$ -40 57712.78ITC2ITC2 $\lambda \cup$ -40 60742.78ITC3 $\lambda \cup$ $\lambda \cup$ -40 41512.15ITC3 $250^{\circ} \times 1000hr$ -40 41512.02C1-251-23 $250^{\circ} \times 1000hr$ -40 60741.72C1-251-26 $250^{\circ} \times 1000hr$ -40 60741.83C1-251-27 $250^{\circ} \times 1000hr$ $-57h$ -40 46581.67C1-251-28 $300^{\circ} \times 1000hr$ -40 46581.67C1-251-28 $300^{\circ} \times 1000hr$ -40 46581.67C1-251-28 $300^{\circ} \times 1000hr$ -40 46581.65C3:301-26 $250^{\circ} \times 5000hr$ -40 46581.65C5:254-23 $250^{\circ} \times 5000hr$ -40 46581.65C5:254-24 $250^{\circ} \times 5000hr$ -40 46581.66C6:304-22 $250^{\circ} \times 5000hr$ -40 46581.66C6:304-23 $300^{\circ} \times 5000hr$ -40 46581.66C6:304-24 -40 46581.661.54C2:2510-26 -40 46581.661.65C2:251		//L = N + L			試験	吸収	衝撃値	横膨出
ILC1 (C) (G)	試験庁符号	供試材	時効条件	採取万同	温度	エネルキ ー	(J/cm^2)	量(mm)
1LC1 ILC2 ILC2 ILC3 ITC1 ITC1 ITC3 C1-251-21 C1-251-21 C1-251-22 C3-301-22 C3-301-22 C3-301-22 C3-301-22 C5-254-23 C3-301-22 C5-254-23 C5-254-24 C5-254-24 C5-256 C5-254-24 C5-256 C5-254-25 C	II G1				(())	(J)	5 1	0.55
11.C2 11.C2 11 2.54 1TC1 11 2.54 1TC2 -40 60 74 2.78 1TC3 -40 41 51 2.15 1TC3 -40 41 51 2.02 1TC3 -40 41 51 2.06 C1-251-21 -40 60 74 1.72 C1-251-23 -40 60 74 1.72 C1-251-24 -1 -40 60 74 1.72 C1-251-25 -1 -40 60 74 1.72 C1-251-26 -1 -40 60 74 1.83 C3:301-24 -250°C×1000hr -40 46 58 1.67 C5:254:21 -1 -40 57 71 1.88 C5:254:22 -2 -250°C×55000hr -40 57 71 1.76 C5:254:23 -2 -2 -250°C -40 54 58	ILCI			та÷р	- 40	57	71	2.77
11.C3 ITC1 ITC2 ITC3 C1 C1-251-21 C1-251-22 C1-251-22 C1-251-22 C1-251-22 C1-251-22 C1-251-26 C3-301-21 C3-301-21 C3-301-22 C3-301-22 \wedge L L L C1-251-26 C3-301-21 C3-301-22 C3-301-22 C3-301-22 \wedge L L L C1-251-26 C3-301-22 C3-301-22 \wedge L L L C3-301-22 C3-301-22 \wedge L L L C3-301-22 C3-301-22 \wedge L L L C1-251-26 C3-301-22 \wedge L L C3-301-22 C3-301-22 \wedge L L C3-301-23 C3-301-24 C3-301-24 C3-301-24 \wedge L L C5-254-22 C C5-254-23 C5-254-23 C5-254-23 C5-254-23 C5-254-24 \wedge L C L C5-254-26 C5-254-26 C6-304-22 C6-304-23 C6-304-23 C6-304-23 C2-2510-25 C2-2510-25 \wedge L C L L S T S T C6-304-24 C6-304-23 C2-2510-25 C2-2510-26 C2-2510-26 C4-3010-26 \wedge L C L L S L C6-304-26 C2-2510-26 C ×10000hr \wedge L L L S T T S T S T S T C6-304-26 \wedge L L S T C6-304-26 C2-2510-26 C C C C2-2510-26 C C C1000hr \wedge L C C T C5-254-26 C C C C C C C2-2510-26 C C C1000hr C C1000hr \wedge L C C T S T S T C 	ILC2			L-S 万回	- 40	57	71	2.54
1 TC1 TC2 TC3 TC3 TC3 TC3 TC3 TC3 TC3 TC3 C1-251-21 C1-251-22 C1-251-24 C1-251-24 C1-251-25 C1-251-26 C1-251-26 C1-251-26 C3:301-21 C3:301-22 C3:301-22 C3:301-26 C3:301-26 C3:301-26 C3:301-26 C5-254-21 C5-254-22 C5-254-22 C5-254-22 C5-254-22 C5-254-22 C5-254-22 C5-254-22 C6:304-22 C6:304-22 C6:304-22 C6:304-22 C6:304-23 C6:304-24 C6:304-24 C2-2510-26 C2-2510-26 C4:30	ILC3	_	なし		- 40	60	74	2.78
TrC2 ITC3 C1-251-21 C1-251-22 C1-251-22 C1-251-24 C1-251-25 C1-251-25 C1-251-26 C3-301-21 C3-301-21 C3-301-22 C3-301-23 C3-301-23 C3-301-23 C3-301-22 C3-301-22 C3-301-22 C5-254-21 C5-254-21 C5-254-22 C5-254-22 C5-254-22 C5-254-22 C5-254-23 C6-304-22 C6-304-22 C6-304-22 C6-304-22 C6-304-22 C2-2510-26 C2-2510-26 C2-2510-26 C2-2510-26 C2-2510-26 C4-3000-rTrS 方向-40 <b< td=""><td>ITCI</td><td>_</td><td></td><td></td><td>- 40</td><td>41</td><td>51</td><td>2.15</td></b<>	ITCI	_			- 40	41	51	2.15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ITC2	_		T-S 万回	- 40	41	51	2.02
C1・251・21 C1・251・23 C1・251・23 C1・251・24 C1・251・25 C1・251・26 250℃×1000hr L·S 方向 -40 60 74 1.72 0.1 C1・251・23 C1・251・26 250℃×1000hr -40 60 74 1.83 C1・251・26 C1・251・26 -40 60 74 1.83 C1・251・26 C1・251・26 -40 46 58 1.67 C1・251・26 -40 46 58 1.67 C1・251・26 -40 46 58 1.67 C1・251・26 -40 46 58 1.67 C3:301・22 -40 57 71 2.34 C3:301・26 -40 57 71 1.88 C3:301・26 -55 -40 46 58 1.65 C5:254・21 -40 57 71 1.76 C5:254・26 -55 -40 46 58 1.56 C5:254・26 -50℃×5000hr -40 54 68 1.99 C6:304・26 -55 -40 46 58 <	ITC3				- 40	41	51	2.06
C1・251・22 C1・251・24 C1・251・25 C1・251・26 C1・251・26 C1・251・26 C1・251・26 C1・251・26 C3:301・21 C3:301・22 C3:301・22 C3:301・24 C3:301・26250℃×1000hrL-S 方向-4062782.10 -100 46581.72 T T T S 方向 -40 46581.72 T T T C4 -100 49611.73 T C3:301・22 C3:301・26 -40 46581.67 T T T T T T T T T T T T T 	C1-251-21				- 40	60	74	1.72
C1-251-23 C1-251-24 C1-251-26 C3-301-22 C3-301-22250 $^{\circ}$ C×1000hr-40-4060741.83-250 $^{\circ}$ C×1000hrT-S 方向-4046581.72C3-301-23 	C1-251-22	_		L-S 方向	- 40	62	78	2.10
C1-251-24 C1-251-25 C1-251-26 C3-301-21 C3-301-22 C3-301-23 C3-301-23C1-C1-251-26 C3-301-23 C3-301-24 C3-301-26C1-C1-251-26 C4-301-22C1-C1-251-26 C4-301-24 C3-301-26C1-C1-251-26 C4-301-24 C3-301-26C1-C1-251-26 C4-301-24 C4-3010-24 C4-3010-24C1-C1-251-26 C4-3010-24 C4-3010-24C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-3010-26C1-C1-251-26 C4-20C1-C1-251-26 C4-20 C4-20C1-C1-251-26 C4-20 C4-20C1-C1-251-26 C4-20-25-25-25C1-C1-251-26 C4-20-25-25-25C1-C1-251-26-26-26-27-26-27-26-27-26-27-26-27-27-27-27-27-27-27-27-27-27-27-27-27-	C1-251-23	_	250°C×1000hr		- 40	60	74	1.83
C1·251·26 C1·251·26 C3·301·21 C3·301·22 C3·301·23 C3·301·23 C3·301·24T-S 方向-4046581.67 $(300^{\circ}C \times 1000hr$ (-40) 46 58 (-17) <	C1-251-24	-	200 0 100000		- 40	46	58	1.72
C1-251-26 C3-301-21 C3-301-22 C3-301-23 C3-301-23 C3-301-24 C3-301-25-4049611.73 $300^{\circ}C \times 1000hr-4054681.74300^{\circ}C \times 1000hr-4057712.34300^{\circ}C \times 1000hr-4046581.55C3-301-25C3-301-26-4046581.65C3-301-26-4046581.65C3-301-25-4046581.65C3-301-26-4044551.57C5-254-21-4057711.76C5-254-23-4057711.76C5-254-26-4060741.92C5-254-26-4060741.92C5-254-26-4046581.56C5-254-26-4046581.56C5-254-26-4046581.60C6-304-21-4046581.60C6-304-22-4054681.99C6-304-23-4054681.99C6-304-24-4054682.00C6-304-25-4041511.53C2-2510-26-4041511.53C2-2510-26-4049611.65C2-2510-26-4049611.65C2-2510-26-4049611.65C4-3010-24-4049611.53C4-3010-24-404961$	C1-251-25	-		T-S 方向	- 40	46	58	1.67
C3·301·21 C3·301·22 C3·301·23 C3·301·24 C3·301·25 C3·301·26 C5·254·21C -40 54 68 1.74 $300^{\circ}C \times 1000hr$ -40 57 71 2.34 -40 57 71 1.88 -40 57 71 1.88 $C3\cdot301\cdot25$ C3·301·26 C5·254·21 -40 46 58 1.55 $C5\cdot254\cdot22$ C5·254·23 -40 46 58 1.65 $C5\cdot254\cdot23$ C5·254·26 -40 44 55 1.57 $C5\cdot254\cdot23$ C5·254·26 $250^{\circ}C \times 5000hr$ -40 60 74 1.92 $C5\cdot254\cdot26$ C5·254·26 $250^{\circ}C \times 5000hr$ -40 46 58 1.54 $C5\cdot254\cdot26$ C5·254·26 -40 46 58 1.56 $C5\cdot254\cdot26$ C5·254·26 -40 46 58 1.56 $C5\cdot254\cdot26$ C5·254·26 -40 46 58 1.56 $C5\cdot254\cdot26$ C5·254·26 -40 46 58 1.60 $C6\cdot304\cdot21$ C6·304·22 -40 46 58 1.60 $C6\cdot304\cdot23$ C6·304·26 -40 54 68 1.99 $C2\cdot2510\cdot26$ C2·2510·24 $250^{\circ}C$ ×10000hr $T\cdotS f\pi h$ -40 41 51 1.53 $C2\cdot2510\cdot26$ C4·3010·24 -40 49 61 1.48 -40 49 61 1.48 $C2\cdot2510\cdot26$ ×10000hr -40 41 51 1.52 -40 41 51 1.52 $C4\cdot3010\cdot24$ C4·3010·	C1-251-26				- 40	49	61	1.73
C3·301·22 C3·301·23 C3·301·24 C3·301·25C $300^{\circ}C \times 1000hr$ L·S 方向 -40 57 71 2.34 $C3\cdot301\cdot25$ C3·301·25 C3·301·26 C5·254·21 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C5·254·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C6·304·22 C2·2510·24 C2·2510·26 C2·2510·26 C4·3010·26C $300^{\circ}C \times 5000hr$ L·S 方向 -40 46 58 1.65 $10^{\circ}C \times 5000hr$ -40 46 58 1.54 -40 46 58 1.54 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 46 58 1.56 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 46 58 1.56 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 46 58 1.56 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 46 58 1.56 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 46 58 1.60 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 41 51 1.53 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 41 51 1.53 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 41 51 1.53 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 41 51 1.53 $10^{\circ}C \times 5000hr$ $1^{\circ}S \hbar h$ -40 41 51 1.53 $10^{\circ}C \times 5000hr$ <	C3-301-21				- 40	54	68	1.74
C3:301:23 C3:301:24 C3:301:25 C3:301:26 C5:254:21 C5:254:22 C5:254:22 C5:254:22 C5:254:22 C5:254:22 C5:254:22 C5:254:24 C5:254:25 C5:254:25 C5:254:25 C5:254:26 C6:304:22 C6:304:22 C6:304:22 C6:304:22 C6:304:22 C2:2510:24 C2:2510:24 C2:2510:24 C6:304:22 C4:3010:25 C4:3010:25C300°C ×1000hr -40 -40 46 58 1.55 -40 44 55 1.57 -40 44 55 1.57 $-5254:23$ C5:254:24 C5:254:25 C5:254:26 C5:254:26 C5:254:26 C5:254:26 C6:304:21 C6:304:22 C6:304:22 C6:304:22 C2:2510:24 $250°C \times 5000hr$ -40 46 58 1.56 $-5254:26$ C5:254:26 C5:254:26 C5:254:26 C5:254:26 C5:254:26 C6:304:27 C6:304:27 C6:304:28 C2:2510:24 C2:2510:24 C4:3010:26 -40 46 58 1.57 -40 -40 46 58 1.56 $-5254:26$ C5:254:26 C5:254:26 C6:304:27 C6:304:28 C6:304:28 C6:304:28 C2:2510:24 C4:3010:24 C4:3010:26 -40 46 58 1.56 -400 41 51 1.56 -400 41 51 1.56 -400 41 51 1.52 $-250°C \times 10000hr$ -40 41 51 1.52 $-250°C \times 10000hr$ -40 49 61 1.48 $-250°C \times 10000hr$ -40 49 61 1.48 $-250°C \times 10000hr$ -40 49 61 1.53 -400 49 61 1.52 -40 41	C3-301-22		300℃×1000hr	L-S 方向	- 40	57	71	2.34
C3:301:24 C3:301:25 C3:301:26 C5:254:21 C5:254:22 C5:254:22 C5:254:23 C5:254:23 C5:254:24 C5:254:24 C5:254:25 C5:254:25 C5:254:26 C5:254:26 C6:304:21 C6:304:22 C6:304:22 C6:304:22 C6:304:22 C6:304:22 C6:304:22 C6:304:22 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C2:2510:24 C4:3010:25 C4:3010:25Composite and a composite and a co	C3-301-23				- 40	57	71	1.88
C3:301:25 C3:301:26 C5:254:21 C5:254:22CT·S 方向-4046581.65C5:254:22 C5:254:23 C5:254:23 C5:254:24 C5:254:25C -40 62782.11C5:254:24 C5:254:25 C5:254:26 C5:254:26 C5:254:26 C5:254:26 C5:254:26 -40 60741.92C6:304:21 C6:304:22 C6:304:23 C6:304:23 C2:2510:24 C2:2510:24 C2:2510:25 C2:2510:25 C2:2510:25 C2:2510:26 C4:3010:26 $300^{\circ}C \times 5000hr$ $L \cdot S \hbar h$ -40 46581.56 $300^{\circ}C \times 5000hr$ $L \cdot S \hbar h$ -40 41511.56 $C6:304:23$ C2:2510:25 C2:2510:25 C4:3010:26 $250^{\circ}C$ ×10000hr $T \cdot S \hbar h$ -40 41511.53 $250^{\circ}C$ ×10000hr $T \cdot S \hbar h$ -40 49611.6553 $C4:3010:25$ C4:3010:26 $300^{\circ}C$ ×10000hr $T \cdot S \hbar h$ -40 41511.52 $C4:3010:26$ $300^{\circ}C$ ×10000hr $T \cdot S \hbar h$ -40 41511.53 $C4:3010:26$ $300^{\circ}C$ ×10000hr $T \cdot S \hbar h$ -40 41511.52 $C4:3010:26$ $300^{\circ}C$ ×10000hr $T \cdot S \hbar h$ -40 41511.37 $C4:3010:26$ -40 41511.39 -40 41511.39	C3-301-24			T-S 方向	- 40	46	58	1.55
C3·301·26 C5·254·21 C5·254·22C-4044551.57C5·254·22 C5·254·23 -40 57 71 1.76 C5·254·23 C5·254·24 -40 62 78 2.11 C5·254·25 C5·254·26 -40 60 74 1.92 C5·254·26 C5·254·26 -40 46 58 1.54 C5·254·26 C5·254·26 -40 46 58 1.56 C6·304·21 C6·304·22 -40 46 58 1.60 C6·304·23 C6·304·24 $300^{\circ}C \times 5000hr$ -40 54 68 1.99 C6·304·26 C2·2510·24 $300^{\circ}C \times 5000hr$ -40 41 51 1.56 C2·2510·24 C2·2510·25 $250^{\circ}C$ ×10000hr $T\cdotS frip$ -40 41 51 1.53 C4·3010·24 C4·3010·26 $300^{\circ}C$ ×10000hr $T\cdotS frip$ -40 41 51 1.52 $300^{\circ}C$ ×10000hr $T\cdotS frip$ -40 41 51 1.53 C4·3010·26 $300^{\circ}C$ ×10000hr $T\cdotS frip$ -40 41 51 1.37	C3-301-25				- 40	46	58	1.65
C5·254·21 C5·254·22 C5·254·23 C5·254·24 C5·254·25 C5·254·26 C6·304·21 C6·304·22 C6·304·23 C6·304·24 C6·304·25 C2·2510·24 C2·2510·24 C2·2510·24 C2·2510·25 C4·3010·24CC -40 57 71 1.76 -40 60 74 1.92 -40 60 74 1.92 -40 46 58 1.54 -40 46 58 1.56 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 54 68 1.99 -40 54 68 1.99 -40 41 51 1.56 -40 41 51 1.53 -40 41 51 1.65 -40 49 61 1.48 -40 49 61 1.48 -40 49 61 1.53 -40 41 51 1.52 -40 41 51 1.52 -40 41 51 1.37 -40 41 51 1.37 -40 41 51 1.39	C3-301-26	~			- 40	44	55	1.57
C5-254-22L-S方向-4062782.11C5-254-23250 $^{\circ}$ C×5000hr-4060741.92C5-254-25-5254-26-4046581.54C5-254-26-4046581.56C6-304-21-4046581.60C6-304-22-4046581.60C6-304-23-4054681.99C6-304-23-4054682.00C6-304-25-4054682.00C6-304-25-4041511.56C2-2510-24-4041511.53C2-2510-25250 $^{\circ}$ C-10000hr-404961C4-3010-25300 $^{\circ}$ C-4049611.53C4-3010-25300 $^{\circ}$ CT-S 方向-4041511.52C4-3010-26-4041511.52-4041C4-3010-26-4041511.37-40C4-3010-26-4041511.37-40C4-3010-26-4041511.37-40C4-3010-26-4041511.37-40C4-3010-26-4041511.37C4-3010-26-4041511.37C4-3010-26-4041511.37C4-3010-26-4041511.39	C5-254-21	С	250℃×5000hr	L-S 方向	- 40	57	71	1.76
C5-254-23 C5-254-24 C5-254-25 C5-254-26 C6-304-21 C6-304-22 C6-304-23 C6-304-23 C6-304-25 C2-2510-26 C2-2510-26 C4-3010-26 $250^{\circ}C \times 5000hr$ -40 -40 46 58 1.54 -40 46 58 1.56 -40 46 58 1.56 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 54 68 1.99 -40 54 68 2.00 -40 54 68 2.00 -40 41 51 1.56 -40 41 51 1.53 -40 41 51 1.65 -40 49 61 1.48 -40 49 61 1.48 -40 49 61 1.53 -40 41 51 1.52 -40 41 51 1.52 -40 41 51 1.37 -40 41 51 1.37 -40 41 51 1.37 -40 41 51 1.39	C5-254-22				- 40	62	78	2.11
C5-254-24 C5-254-25 C5-254-26 C6-304-21 C6-304-22 C6-304-23 C6-304-24 C6-304-25 C2-2510-24 C2-2510-26 C4-3010-25 $2300 \ensuremath{\mathbb{C} \times 5000hr}$ -40 46 58 1.56 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 46 58 1.60 -40 54 68 1.99 -40 54 68 2.00 -40 41 51 1.56 -40 41 51 1.50 -40 41 51 1.53 -40 49 61 1.65 -40 49 61 1.48 -40 49 61 1.53 -40 49 61 1.53 -40 49 61 1.53 -40 41 51 1.52 -40 41 51 1.37 -40 41 51 1.37 -40 41 51 1.37 -40 41 51 1.39	C5-254-23				- 40	60	74	1.92
C5·254·25T·S 方向-4046581.56C5·254·26 -40 46581.60C6·304·21 -40 46581.60C6·304·22 -40 52641.78C6·304·23 -40 54681.99C6·304·24 -40 54682.00C6·304·25 -40 41511.56C2·2510·24 -40 41511.53C2·2510·25 -250° -40 49611.65C2·2510·26 $\times 10000$ hr $T\cdotS$ 方向 -40 49611.53C4·3010·26 300° $\times 10000$ hr $T\cdotS$ 方向 -40 41511.52C4·3010·26 300° $\times 10000$ hr $T\cdotS$ 方向 -40 41511.37C4·3010·26 -40 41511.371.39 -40 41511.39	C5-254-24			T-S 方向	- 40	46	58	1.54
C5-254-26 C6-304-21 C6-304-22-4046581.60C6-304-22 C6-304-23-4052641.78C6-304-23 C6-304-24 -40 54681.99C6-304-24 C6-304-25 -40 54682.00C6-304-26 C2-2510-24 -40 41511.56C2-2510-25 C2-2510-26 -40 41511.53C2-2510-26 C4-3010-26 250° ×10000hr $T-S$ 方向 -40 49611.65C4-3010-25 C4-3010-26 300° ×10000hr $T-S$ 方向 -40 41511.52 -40 41511.53 -40 41511.53C4-3010-26 300° ×10000hr $T-S$ 方向 -40 41511.52C4-3010-26 -40 41511.37 -40 41511.37	C5-254-25				- 40	46	58	1.56
C6-304·21 C6·304·22-4052641.78C6·304·23 $300^{\circ}C \times 5000hr$ $L-S 方向$ -40 54 68 1.99 C6·304·24 -40 54 68 2.00 C6·304·25 -40 41 51 1.56 C6·304·26 -40 41 51 1.50 C2·2510·24 $250^{\circ}C$ -40 41 51 1.53 C2·2510·25 $250^{\circ}C$ -40 49 61 1.65 C2·2510·26 $\times 10000hr$ $T-S 方向$ -40 49 61 1.53 C4·3010·24 $300^{\circ}C$ $\times 10000hr$ $T-S 方向$ -40 41 51 1.52 C4·3010·26 $300^{\circ}C$ $\times 10000hr$ $T-S 方向$ -40 41 51 1.37	C5-254-26				- 40	46	58	1.60
C6·304·22 C6·304·23L·S 方向-4054681.99C6·304·23 $300^{\circ}C \times 5000hr$ -40 54 68 2.00 C6·304·24 -40 41 51 1.56 C6·304·25 -40 41 51 1.56 C6·304·26 -40 41 51 1.50 C2·2510·24 $250^{\circ}C$ -40 41 51 1.53 C2·2510·25 $250^{\circ}C$ -40 49 61 1.65 C2·2510·26 $\times 10000hr$ $T \cdot S f n$ -40 49 61 1.53 C4·3010·24 $300^{\circ}C$ -40 41 51 1.52 C4·3010·26 $\times 10000hr$ $T \cdot S f n$ -40 41 51 1.37 C4·3010·26 -40 41 51 1.39	C6-304-21			L-S 方向	- 40	52	64	1.78
C6-304-23 C6-304-24 $300^{\circ}\mathbb{C} \times 5000hr$ -40 54 68 2.00 C6-304-25 -40 41 51 1.56 C6-304-25 -40 41 51 1.50 C6-304-26 -40 41 51 1.53 C2-2510-24 $250^{\circ}\mathbb{C}$ -40 41 51 1.65 C2-2510-25 -40 49 61 1.65 C2-2510-26 $\times 10000hr$ $T-S frip$ -40 49 61 1.53 C4-3010-25 $300^{\circ}\mathbb{C}$ -40 41 51 1.52 C4-3010-26 $\times 10000hr$ $T-S frip$ -40 41 51 1.37 C4-3010-26 -40 41 51 1.37	C6-304-22				- 40	54	68	1.99
C6·304·24 C6·304·25 C6·304·26 C2·2510·24 C2·2510·26 C4·3010·26300 C×5000hr T·S 方向 -40 4151 1.56 T·S 方向 -40 4151 1.50 C2·2510·24 C2·2510·26 C4·3010·26 250 °C ×10000hr -40 4961 1.65 C4·3010·26 250 °C ×10000hrT·S 方向 -40 4961 1.53 C4·3010·26 300 °C ×10000hrT·S 方向 -40 4151 1.52	C6-304-23		000°0		- 40	54	68	2.00
C6·304·25 T·S 方向 -40 41 51 1.50 C6·304·26 -40 41 51 1.53 C2·2510·24 250°C -40 49 61 1.65 C2·2510·25 250°C T·S 方向 -40 49 61 1.65 C2·2510·26 ×10000hr T·S 方向 -40 49 61 1.53 C4·3010·24 300°C ×10000hr T·S 方向 -40 41 51 1.52 C4·3010·26 300°C T·S 方向 -40 41 51 1.37	C6-304-24		300°C×5000hr	-	- 40	41	51	1.56
C6·304·26 C2·2510·24-4041511.53C2·2510·25 C2·2510·26 250° C ×10000hr -40 49611.65C2·2510·26 C4·3010·24 $\times 10000hr$ $T \cdot S $ 方向 -40 49611.48C4·3010·24 C4·3010·26 300° C ×10000hr $T \cdot S $ 方向 -40 49611.53T·S 方向 -40 41511.52C4·3010·26 $\times 10000hr$ $T \cdot S $ 方向 -40 41511.37	C6-304-25			T-S 方向	- 40	41	51	1.50
C2-2510-24 C2-2510-25250°C ×10000hrT-S 方向 -40 4961 1.65 C2-2510-26 C4-3010-24×10000hrT-S 方向 -40 4961 1.48 C4-3010-24 C4-3010-25 $300°C$ ×10000hrT-S 方向 -40 4151 1.52 C4-3010-26×10000hrT-S 方向 -40 4151 1.37	C6-304-26				- 40	41	51	1.53
C2-2510-25 C2-2510-26 C4-3010-24 250° C ×10000hrT-S 方向 -40 49 61 1.48 300° C ×10000hr -40 49 61 1.53 300° C ×10000hr -40 41 51 1.52 -40 41 51 1.37 -40 41 51 1.37 -40 41 51 1.39	C2-2510-24		27000		- 40	49	61	1.65
C2-2510-26 ×10000hr -40 49 61 1.53 C4-3010-24 300°C -40 41 51 1.52 C4-3010-25 ×10000hr T-S 方向 -40 41 51 1.37 C4-3010-26 ×10000hr T-S 方向 -40 41 51 1.37	C2-2510-25	1	250°C	T-S 方向	- 40	49	61	1.48
C4-3010-24 300°C - 40 41 51 1.52 C4-3010-25 ×10000hr T-S 方向 - 40 41 51 1.37 C4-3010-26 ×10000hr T-S 方向 - 40 41 51 1.37	C2-2510-26		×10000hr		- 40	49	61	1.53
C4-3010-25 300 °C T-S 方向 - 40 41 51 1.37 C4-3010-26 ×10000hr T-S 方向 - 40 41 51 1.39	C4-3010-24	1	20.00		- 40	41	51	1.52
C4-3010-26 ×10000hr - 40 41 51 1.39	C4-3010-25	1	300°C	T-S 方向	- 40	41	51	1.37
	C4-3010-26	1	×10000hr		- 40	41	51	1.39

表 21 MB-A3004 供試材 Cの V ノッチシャルピー衝撃試験結果一覧

図 61 MB-A3004の-40℃における衝撃特性に及ぼす長時間時効(250℃)の影響
 Vノッチシャルピー衝撃試験における衝撃値

▼ノッチシャルピー衝撃試験における衝撃値

図 63 MB-A3004の-40℃における衝撃特性に及ぼす長時間時効(250℃)の影響
 V ノッチシャルピー衝撃試験における横膨出量

図 64 MB-A3004の - 40℃における衝撃特性に及ぼす長時間時効(300℃)の影響
 Vノッチシャルピー衝撃試験における横膨出量

6.1.3 組織に及ぼす長時間熱時効の影響

(1)結晶粒径測定

BC-A6N01 の初期材と長時間時効材(300℃×20000hr)の結晶粒径を確認した。 BC-A6N01の結晶粒径が小さく、光学顕微鏡で明確に確認することは難しいため、EBSD による観察を試みた。初期材と長時間時効材の EBSD による方位分布図を図 65 と図 66 にそれぞれ示す。

方位分布図の画像解析によって算出した結晶粒径を表 22 に示す。長時間時効による引 張特性の変化を組織の観点から考察するために傾角粒界を評価することとし、そのために 方位差 15°で結晶粒を識別することとした。参考として方位差 5°でも併せて評価した。初 期材と長時間時効材(300℃×20000hr)の平均結晶粒径には有意差がないことが判明した。 顕著な再結晶粗大化が生じず、長時間時効条件が満たすべき条件の1つとして 3.1.2 で述 べた、極端に組織が変化する条件とならないことが満たされていることが確認できた。

初期材、長時間時効材いずれも優先方位を有していると考えられるが、長時間時効により方位は若干変化することが確認された。

(2) 析出組織観察

BC-A6N01の初期材、長時間時効材(300℃×20000hr)の TEM 明視野像を図 67 と図 68 にそれぞれ示す。初期材では棒状析出物の数は少なかった。一方、長時間時効材では 500nm 程度のサイズを持つ棒状析出物が多く認められたエネルギー分散型 X 線分光分析(EDS)による分析では原子散乱因子の近い Mg と Si を定量して区別することは難しいが、Al-Mg-Si 系合金の析出相として典型的な形態を有しているため Mg2Si 系析出物と判断した。輪郭の 不明瞭な塊状の粒子は酸化アルミニウムであった。

これらのことから、初期材ではある程度焼入れされており、その後の室温時効で若干強 度が上がるものの、長時間の熱処理によって初期 GP ゾーンは強度に寄与しない棒状の析 出物へと変態し、強度低下すると考えられ、表 7 で述べた強化機構と矛盾しない。

(方位分布図以外では色は方位を示しておらず、異なる結晶粒と識別した領域が

 図 66 BC-A6N01の長時間時効材(300℃×20000hr)の EBSD による結晶配向調査 (方位分布図以外では色は方位を示しておらず、異なる結晶粒と識別した領域が

	結晶粒径(平均円相当直径) (µm)						
供試材	方位差 5°			方位差 15°			
	視野1	視野 2	平均	視野1	視野 2	平均	
BC-A6N01 初期材	3.8	4.0	3.9	4.4	4.7	4.6	
BC-A6N01 長時間時効材 (300℃×20000hr)	3.7	3.8	3.8	4.7	4.7	4.7	

表 22 EBSD による結晶粒径測定結果

酸化アルミニウム

/ 棒状析出相(Mg₂Si)

酸化アルミニウム

1µm

図 67 BC-A6N01の初期材の TEM 明視野像

棒状析出相(Mg₂Si)

棒状析出相(Mg₂Si)

1µm

図 68 BC-A6N01の長時間時効材(300℃×20000hr)の TEM 明視野像

6.1.4 まとめ

BC-A6N01と MB-A3004の初期材において存在すると考えられる非平衡な強化因子を 除去するために、それらの熱安定性とキャスクの供用条件を考慮して決定した温度で長時 間時効処理を行った。その結果、いずれの材料も 250℃または 300℃で 10000hr 程度の長 時間時効処理を行えば、0.2%耐力と引張強さが一定値に近づく傾向であった。

引張試験に加え、Vノッチシャルピー衝撃試験により長時間時効処理による靱性の変化 を調査した結果、衝撃値と横膨出量も 250℃または 300℃で 10000hr 程度の長時間時効処 理を行えば、一定値に近づくことが確認できた。

6.2 完全焼なまし材の強度の確認結果

3章で述べたように、析出物による強度が十分に失われ、キャスクの使用環境で考えら えるような再結晶が十分に進行し、かつ過飽和に固溶されている溶質元素がなく過剰な固 溶強化がないような状況を作り出すための完全焼なまし条件を見出すため、次の2ステッ プの熱処理試験を実施した。

(Step 1) キャスク使用環境で生じ得る再結晶を完了させる熱処理温度の検討 処理温度選定の考え方:

結晶粒度番号が 10000hr 長時間時効材と同等に保たれる温度であること。すな わち、異常な組織変化が起きる温度と時間以下であること。

(Step 2) 過飽和固溶を排除するための冷却速度の検討

冷却速度選定の考え方:

最も強度が低下する冷却速度

強度は引張試験で確認し、母相中の溶質元素の変化は導電率の測定によって評価した。 一般に、結晶粒界、析出物、転位、溶質原子等の結晶の規則性を乱すものは全て導電率低 下の原因となる。時効析出において過飽和な溶質元素が母相中から排出され析出物になる と、溶質元素による抵抗が低下して導電率が上昇し、新たに形成された析出物の抵抗が増 大してこれに起因する導電率低下が生じる。このとき全体の導電率は、両者の合計で決ま るとされる。析出物の抵抗は、アルミニウム合金の焼入れ・時効後に現れるようなクラス タや準安定相のように高密度に析出している場合は大きいが、非整合の粗大な析出物とな ると小さくなる。安定相のような粗大な析出物が形成される場合、その抵抗は小さいため 導電率の低下は小さい。さらに、同時に起こる固溶量の減少によって導電率が増大してい く効果が支配的となる。すなわち、導電率が大きいほど、母相中の固溶元素量が少ないと 見做すことができる。

6.2.1 BC-A6N01 の完全焼なまし条件の検討結果

(1)Step 1 熱処理温度の選定

まず熱処理温度の影響を評価するために、Step 1 として以下の条件で熱処理を行った。 供試材は材料 L とした。

o熱処理温度	:500、520、540、560、580、600 及び 620℃
o熱処理時間	: 10hr
o冷速	: 空冷(この板厚での冷却速度は約 600 から 700℃/hr である。)
0材料	: BC-A6N01 (供試材:L)

強度に及ぼす上記熱処理の影響を確認するため、熱処理後の材料の引張試験を実施した。 0.2%耐力及び引張強さの熱処理温度依存性を図 70及び図 71に示す。熱処理による 0.2% 耐力と引張強さの著しい変化は認められなかったため、520℃を熱処理温度の候補とした。 また、製造時温度(熱間押出)である 540℃も熱処理温度の候補とした。

(2)Step 2 冷却速度の選定

冷却速度の影響を確認し、強度が最も大きく低下する冷却速度を決定するために、供試 材を Step 1 で選定した熱処理温度で保持した後、3 水準の冷却速度で冷却した。処理条件 と調査内容を以下に示す。

○熱処理温度 : 520℃、540℃(製造時温度)
○熱処理時間 : 10hr
○目標冷速 : 0.5、1、2℃/hr
○材料 : BC-A6N01(供試材:L)
○調査内容 : 導電率測定、引張試験(室温、150℃、一部の条件で200℃)
○条件選定 : 強度が最も大きく低下する冷却速度

図 72 及び図 73 に、520℃で熱処理した BC-A6N01 の引張特性の冷却速度依存性を示 す。冷却速度 2~0.5℃/hr の引張強さは長時間時効材と同等であり、強度の低下は冷却速 度が 2℃/hr で飽和する傾向であった。

a.導電率測定結果

試験片は、熱処理サンプルから 30mm×30mm に切り出し、板厚中央まで研磨した後に、 バフ研磨で仕上げた。測定は、GE Inspection Technologies 社製デジタル導電率計(オー トシグマ 3000)を用い室温で実施した。導電率の単位は%IACS (International Annealed Copper Standard)であり、焼なました純銅の 20℃における電気伝導率(1.7241×10⁻⁸Ω・m) に対する百分率である。

- · 図 74 に示すように、導電率は冷却速度が遅くなると高くなり、冷却速度 2℃/hrより遅くなると導電率の変化が小さくなった。
- このことから、高温で固溶した溶質元素は、冷却速度 2℃/hr 未満で冷却すれば過飽
 和な状態を保つことなく、刻々その温度における平衡固溶限まで母相から排出され
 ていくと推定される。
- 導電率の変化の傾向は強度変化と一致しているため、冷却速度による強度の変化は、
 冷却途上に起因して固溶強化量が異なることによると考えられる。

b.引張試験結果

図 75 及び図 76 には、520℃及び 540℃で熱処理した BC-A6N01 の引張試験結果の試 験温度依存性を示す。

- 6.1 では 300℃で 10000hr の長時間時効処理によって強度変化がほぼ停止すること を確認したため、ここでは完全焼なましの比較対象として、同じ供試材でそれより さらに長時間の 300℃×20000 時間の長時間時効処理を行った材料の引張試験結果も 併せて示した。
- ・ 520℃×10hr→0.5℃/hr 熱処理材及び 540℃×10hr→0.5℃/hr 熱処理材の引張試験結果は、300℃×20000 時間の長時間時効材と同等であると考えられる。従って、冷却

速度は 0.5℃/hr が適切であると判断した。また、熱処理温度は、製造時温度である 540℃を選定した。

6.2.2 MB-A3004 の完全焼なまし条件の検討結果

(1)Step 1 熱処理温度の選定

BC-A6N01 と同様、Step 1 として熱処理温度の影響を評価するために以下の条件で熱処 理を行った。供試材は材料 C とし、以下の条件で熱処理を行った。ここで、350、400 及 び 450℃での熱処理は、JIS H 0001 に記載のある標準的な焼なまし(O 材処理)条件を勘案 して設定したものである。JIS H 0001 における O 材処理条件は、3004 合金では 345℃保 持後空冷または炉冷、6061 合金では 410℃で 2~3hr 保持後空冷または炉冷となっている。 ここではこれら 350、400 及び 450℃での熱処理を行ったものを O 材と呼ぶこととする。

o熱処理温度	:350、400、450、500、520、530、540、560 及び 580℃
o熱処理時間	: 10hr
o冷速	: 空冷(この板厚での冷却速度は約 600 から 700℃/hr である。)

○材料 : MB-A3004 (供試材:C)

aミクロ組織観察結果

ここでは押出方向の観察をL方向、板厚方向の観察をZ方向と称することとする(図 69)。 高温熱処理後のミクロ組織観察結果を押出まま材、長時間時効材と比較し図 77及び図 78 に示す。

- ・ 長時間時効材及び O 材でも結晶粒成長が認められ、特に Z 方向観察では 300℃
 ×10000hr 時効材と O 材の結晶粒が押出まま材より大きいことが確認された。
- ・ 500℃以上で高温熱処理を行った結果、結晶粒成長が認められ、特に 580℃では全 断面に粗大結晶粒が認められた。
- ・ 540℃では表層近傍に粗大結晶粒が認められたため、Step 2 の熱処理温度は 520℃
 を選定した。結晶粒の確認が比較的容易である L 方向観察では、520℃×10hr 加熱材の結晶粒は、300℃×10000hr 長時間時効材と同程度であった。

b.硬さ測定結果

高温熱処理材のビッカース硬さ測定結果を表 23 と図 79 に示す。

 ・ 硬さは表層ほど低くなる傾向が認められ、熱処理温度が高くなるほど低くなる傾
 向が認められた。

c.導電率測定結果

試験片は、熱処理サンプルから 30mm×30mm に切り出し、板厚中央まで研磨した後に、 バフ研磨で仕上げた。測定は、GE Inspection Technologies 社製デジタル導電率計(オー トシグマ 3000)を用い室温で実施した。

 ・ 板厚中央位置の導電率測定結果を表 24 と図 80 に示す。導電率は 450℃加熱で最 も高くなる傾向が認められた。これは、450℃が Al-Mn 系析出物の析出ノーズに 相当する温度のため、析出が最も早く起きたためと考えられる。

d.引張試験結果

高温熱処理材の室温、150℃、200℃の引張試験結果を表 25 と図 81 から図 84 に示す。

- · 0.2%耐力と引張強さは、560℃より高い熱処理で著しく低下した。これは、板厚全 断面に異常結晶粒成長が認められた温度とほぼ一致していた。
- 0.2%耐力は、室温よりも150℃において高い。一方、200℃における0.2%耐力に 着目すると、500℃と520℃熱処理材は室温の値に近く、540℃以上で熱処理を行 った場合は150℃での値に近くなる。これは、冷却中の過飽和固溶が150℃と200℃ では、試験前の昇温中に溶質原子のクラスタ等による若干の析出硬化が生じたた め考えられた。200℃における0.2%耐力が150℃よりも高くなったのは、高温ほ どその析出硬化量が大きかったためと推察された。
- 150℃における引張強さは、室温に近く、200℃より高い。500℃以上の温度で加熱した熱処理材の試験温度150℃の引張強さが室温に近かったのは、過飽和固溶の試験前の析出と長時間時効材と同様、引張試験中に溶質原子のクラスタによる析出硬化が生じた可能性が考えられた。
- ・ 押出まま材、長時間時効材、O材、高温熱処理材の高温強度の温度依存性を比較し図 85 と図 86 に示す。
- 580℃×10hr 以外の高温熱処理材の試験温度室温の 0.2%耐力と引張強さは O 材より低い。これは結晶粒成長の影響を受けているものと考えられる。
- 一方、高温熱処理材の試験温度 150℃、200℃の 0.2%耐力と引張強さは O 材と同等か若干高い。これは、高温熱処理材が O 材より冷却速度が大きいため、冷却中に過飽和固溶となり、試験前/試験中に析出が起きたためと考えられた。
- これらのことから、200℃以下における強度を低下させるには、冷却速度を小さくし、冷却中の過飽和固溶を少なくする必要があることが分かった。

e.処理温度の選定

以上の結果より処理温度を決定した。350℃以上で高温熱処理を行った結果、再結晶・ 結晶粒成長が認められた。また、540℃では表層近傍に粗大結晶粒が認められた。Step 2 では冷却速度を小さくするので、冷却過程で異常結晶粒成長が起きることを防止するため に、熱処理温度は520℃を選定した。

(2)Step 2 冷却速度の選定

冷却速度の影響を確認し、強度が最も大きく低下する冷却速度を決定するために、供試 材を Step 1 で選定した熱処理温度で保持した後、7 水準の冷却速度で冷却した。処理条件 と調査内容を以下に示す。

o熱処理温度	:520℃,温度は供試材に取り付けた熱電対で管理した。
o熱処理時間	: 10hr
o目標冷速	:空冷(この板厚での冷却速度は約 600 から 700℃/hr である)、10、5、
	2、1、0.5 及び 0.3℃/hr
o材料	: MB-A3004 (供試材 C)
○調査内容	:硬さ測定,導電率測定,室温引張試験,150℃引張試験

o条件選定 :強度が最も大きく低下する冷却速度

i.熱処理条件(Step 2')

Al-Mn 系合金においては、高温で固溶した Mn は温度が低下しても過飽和に固溶さ れた状態が保持されやすい。そこで、熱処理温度と冷却速度の両方を小さくして極力 Mn の固溶量が下がると考えられる条件で低い強度が得られるかを確認するために、 以下の条件も追加して比較を行うこととした。

- (1) 350° C×10hr→2 $^{\circ}$ C/hr
- ② 350°C×10hr→1°C/hr
- $3 400^{\circ}C \times 10hr \rightarrow 2^{\circ}C/hr$
- (4) 400°C×10hr \rightarrow 1°C/hr
- (5) 450°C×10hr→2°C/hr
- (6) 450°C×10hr→2°C/hr

ii.0 材熱処理

JIS H 0001 に規定のある焼なまし条件に相当する温度でも処理を行い、結果を比較 することとした。JIS H 0001 では冷却方法は空冷または炉冷とのみ規定されている。 350℃×19hr→8.9℃/hr(340℃から 100℃の平均冷却速度)

iii.長時間時効材

250℃×10000hr 300℃×10000hr

これらの熱処理を施したサンプルに対し、ミクロ組織調査、硬さ測定、導電率測定、引張 試験(室温、150℃、200℃)を実施した。

a.ミクロ組織観察結果

高温熱処理後のミクロ組織観察結果を押出まま材、長時間時効材、O材と比較し図 87 及び図 88 に示す。

- ・ 長時間時効材及び O 材でも結晶粒成長が認められ、特に Z 方向観察では 300℃ ×10000hr 長時間時効材と O 材の結晶粒が押出まま材より大きいことが確認された。
- ・ 500℃以上で高温熱処理を行った結果、再結晶・結晶粒成長が認められ、特に 580℃ では全断面に粗大結晶粒が認められた。
- ・ 540℃では表層近傍に粗大結晶粒が認められたため、熱処理温度としては 520℃を 選定した。結晶粒が比較的判別しやすい L 方向観察では、520℃×10hr 加熱材の結 晶粒は、300℃×10000hr 長時間時効材と同程度であった。

b.硬さ測定結果

高温熱処理材のビッカース硬さ測定結果を表 26 及び表 27 に示す。

硬さは表層ほど低い傾向が認められた。加熱温度 520℃について見ると、硬さの低下は冷却速度が小さいほど顕著であるが、冷却速度 0.5/hr と 0.3℃/hr とでは同程度であることから、0.5℃/hr では既に硬さの低下が飽和しているものと考えられた。

c.導電率測定結果

引張試験片を採取した板厚中央位置の導電率測定結果を

表 28 に示す。試験片は、熱処理サンプルから 30mm×30mm に切り出し、板厚中央ま で研磨した後に、バフ研磨で仕上げた。測定は、GE Inspection Technologies 社製デジタ ル導電率計(オートシグマ 3000)を用い室温で実施した。

- 導電率は、熱処理温度が高くなるほど低くなる傾向が認められた。これは、Mn 固 溶量の増加によるものと考えられた。
- ・ 熱処理温度 520℃で冷却速度の影響を評価した結果を図 89 に示す。導電率の変化 は 0.5℃/hr より低い冷却速度で飽和する傾向であった。

d.引張試験結果

高温熱処理材の室温、150℃、200℃の引張試験結果を表 29、図 90及び図 91に示す。

- 図 90及び図 91に示すように、引張特性は 0.5℃/hr 以下の冷却速度で変化がほぼなくなり、また、前述の図 89に示すとおり、導電率においても 0.5℃/hr 以下の冷却速度で変化がほぼなくなることから、当該条件で組織、析出物、固溶等が平衡状態に達していると判断できる。
- 過飽和固溶 Mn 量を極力減少させることを意図して熱処理温度を 350、400 及び 450℃と低くした Step 2'の条件でも、熱処理温度 520℃保持の場合の引張特性と 差がない結果であった。
- 上記より、520℃×10hr保持、0.5℃/hr以下の冷却速度にて処理することにより平 衡状態を示す完全焼なまし処理が可能であることを確認した。また、10000hr長 時間過時効熱処理材での試験結果は、0.5℃/hr以下の冷却速度での熱処理材と同 等の結果であることから、長時間過時効熱処理及び完全焼なまし処理の両方法に おいて評価可能であることを確認した。

e.Mn 系分散相の確認結果

熱処理に伴って Mn 系分散相のサイズや分布状態が変化するかを確認するため、透過型 電子顕微鏡(TEM)による観察を行った。TEM 観察のために熱処理後の試料を厚さ 0.1mm 程度まで研磨し、直径 3mm の円板とした後、電解液によるツインジェット法で研磨して 薄膜試料とした。観察は日本電子 JEOL-2010F を加速電圧 200kV で用いて実施した。

MB3004の初期材と熱処理材における分散粒子のTEM明視野像とエネルギー分散分光分析(EDS)定性分析結果を図92に示す。EDSによれば分散粒子からはAl、 Mn及びSiが検出され、3章で述べたようにAl₆(Mn,Si)であると考えられた。これは初期材と熱処理材とで同様であった。

- TEM 観察用薄膜試料は、観察部位ごとに膜厚が異なるため、熱処理条件による Mn 系分散相の数密度の変化を定量的に知ることはできないが、比較対象間で膜厚 が極端に異ならないと考えられる位置で観察を行った。一方で、サイズは直接の 比較可能である。
- 図 93 に初期材の TEM 明視野像を示す。ある程度広い領域で Mn 系分散相のサイ ズを確認するため、観察位置を変えた 6 通りの視野を示した。直径が数十から 100µm 程度の粒状コントラストは Mn 系分散相である。200µm を大きく超えるも のは観察されなかった。
- 図 94、図 95及び図 96は、520℃で10hr保持後に常温までそれぞれ2℃/hr、0.5℃ /hr及び 0.3℃/hr で制御冷却した場合の TEM 明視野像を示す。Mn 系分散相の径 は初期材と同様に200µmを大きく超えるものはなく、これらの熱処理条件では Mn 系分散相が著しく粗大化することはないと考えられた。強度に直接影響する数 密度については、上述のように膜厚の問題で精緻な評価が困難であるが、膜厚の 変動を考慮しても異なる熱処理条件間で極端な相違はないと考えられる。また、 粒子のサイズが変化していないことはオストワルド的な成長が生じていないこと を示唆しており、粒子の数自体も変化していないと間接的に推定される。

•

図 70 BC-A6N01 高温熱処理材の 0.2%耐力に及ぼす熱処理温度の影響

図 71 BC-A6N01 高温熱処理材の引張強さに及ぼす熱処理温度の影響

図 72 BC-A6N01 高温熱処理材の 0.2% 耐力に及ぼす冷却速度の影響

図 73 BC-A6N01 高温熱処理材の引張強さに及ぼす冷却速度の影響

図 74 BC-A6N01 高温熱処理材の導電率に及ぼす冷却速度の影響 導電率の単位は%IACS であり、焼なました純銅の 20℃の電気伝導率に対する百分率である。

押出まま材

無断複製・転載禁止

長時間時効材

0材

高温熱処理材

図 77 MB-A3004の熱処理後のミクロ組織観察結果(T-Z 面,表面付近)

押出まま材

長時間時効材

0材

高温熱処理材

図 78 MB-A3004の熱処理後のミクロ組織観察結果(T-Z 面, 板厚中央)
	符号	熱処理温度	熱処理時間	冷却速度	油牛牛 栗	ビッカース硬さ HV0.5				
村科	行方	(°C)	(hr)	(°C/hr)	測走位直	1)	2	3	平均	
					表面から0.3mm	50.9	51.8	51.0	51.2	
	C-FA19	350			1/4t	49.9	51.1	51.0	50.7	
					1/2t	51.2	51.4	51.5	51.4	
					表面から0.3mm	48.3	48.7	49.2	48.7	
	C-FA20	400			1/4t	50.1	50.7	50.4	50.4	
					1/2t	50.6	50.4	51.4	50.8	
					表面から0.3mm	49.4	48.8	48.9	49.0	
	C-FA21	450			1/4t	49.4	51.0	50.2	50.2	
					1/2t	50.4	49.6	50.1	50.0	
					表面から0.3mm	47.6	47.8	46.8	47.4	
	C-FA1	500			1/4t	47.7	48.7	48.8	48.4	
					1/2t	49.3	49.3	49.3	49.3	
				COO 316 700	表面から0.3mm	47.4	47.3	48.5	47.7	
	C-FA2	520	10	600 から 700 (空冷)	1/4t	48.4	49.5	49.1	49.0	
MB-A3004				(王仰)	1/2t	49.8	49.0	49.7	49.5	
チャージC		530			表面から0.3mm	47.1	46.5	46.7	46.8	
	C-FA10				1/4t	49.7	48.8	47.5	48.7	
					1/2t	49.9	48.8	49.4	49.4	
					表面から0.3mm	47.4	46.5	46.5	46.8	
	C-FA4	540			1/4t	48.2	49.1	46.6	48.0	
					1/2t	48.4	49.2	48.2	48.6	
					表面から0.3mm	45.5	46.6	45.5	45.9	
	C-FA5	560			1/4t	45.5	46.8	46.9	46.4	
					1/2t	47.3	47.6	47.9	47.6	
					表面から0.3mm	44.9	44.0	44.1	44.3	
	C-FA7	580			1/4t	46.7	46.9	47.0	46.9	
					1/2t	45.1	46.3	45.1	45.5	
				600から700 (欠冷)	表面から0.3mm	45.0	45.9	43.6	44.8	
	C-FA11	520	50 6		1/4t	45.7	46.9	47.0	46.5	
	U'FAII			(工口)	1/2t	47.5	47.3	47.6	47.5	

表 23 MB-A3004の高温熱処理材のビッカース硬さ測定結果(Step 1)

1/4t:表面より板厚の1/4だけ深い位置を示す。、1/2t:表面より板厚の1/2だけ深い位置、すなわち板厚中央を示す。

無断複製・転載禁止

++)(2)	が日	熱処理温度	熱処理時間	冷却速度	試験片寸法	测力位置	導電率
机科	付亏	(°C)	(hr)	(°C/hr)	(mm)	側正世直	(%IACS)
	C-FA19	350			15×15		37.3
	C-FA20	400			15×15		39.7
	C-FA21	450			15×15	 板厚中央 	40.6
-	C-FA1	500			15×14		39.2
MB-A3004	C-FA2	520	10	600 から 700	15×14		38.5
チャージ C	C-FA10	530		(空冷)	15×15		38.0
	C-FA4	540			15×15		37.5
	C-FA5	560			15×16		36.2
	C-FA7	580			15×15		34.6
	C-FA11	520	50		15×15		39.1

表 24 MB-A3004 の高温熱処理材の導電率測定結果(Step 1)

導電率の単位は%IACSであり、焼なました純銅の20℃の電気伝導率に対する百分率である。

測定方法: 板厚の 1/2 位置をバフ研磨にて仕上げて測定

測定器: GE Inspection Technologies 社製デジタル導電率計(オートシグマ 3000) 測定温度:室温

図 79 MB-A3004 の高温熱処理材の硬さ測定結果

図 80 MB-A3004 の高温熱処理材の導電率測定結果 導電率の単位は%IACS であり、焼なました純銅の 20℃の電気伝導率に対する百分率である。

熱処理条件				試験	試験片	試験片、	†法(mm)) 引張試験				
材質	温度	時間	冷却速度	温度	符号	古仅	標点	0.2%耐力	引張強さ	伸び	絞り	破断
	(°C)	(hr)	(°C/hr)	(°C)		但侄	距離	(MPa)	(MPa)	(%)	(%)	位置
				23	C-FA19-1	4.01	20.0	98	192	18.5	49.3	А
	350			150	C-FA19-2	4.01	20.0	96	181	19.5	44.0	А
				200	C-FA19-3	4.00	20.0	89	138	42.0	74.5	А
				23	C-FA20-1	4.00	20.0	94	195	19.0	54.1	Α
	400			150	C-FA20-2	4.00	20.0	96	183	20.0	39.2	А
				200	C-FA20-3	4.00	20.0	86	137	42.0	77.1	А
				23	C-FA21-1	4.00	20.0	94	196	18.5	50.6	А
	450			150	C-FA21-2	4.00	20.0	99	186	19.5	42.0	А
				200	C-FA21-3	4.01	20.0	89	138	37.0	73.7	Α
				23	C-FA1-1	4.00	20.0	89	187	19.5	51.4	А
	500			150	C-FA1-2	4.00	20.0	91	184	18.0	35.2	Α
				200	C-FA1-3	3.99	20.0	87	142	33.5	71.4	А
	520			23	C-FA2-1	4.00	20.0	88	186	19.0	48.9	А
MB-A3004		10	600 から 700 (空冷)	150	C-FA2-2	4.00	20.0	93	184	17.0	35.8	А
			(王11)	200	C-FA2-3	4.00	20.0	88	143	35.5	67.6	А
				23	C-FA10-1	4.00	20.0	92	185	18.5	48.7	А
	530			150	C-FA10-2	4.00	20.0	93	183	17.0	39.4	А
				200	C-FA10-3	4.00	20.0	89	142	38.5	72.7	Α
				23	C-FA4-1	4.00	20.0	86	184	19.5	44.9	А
	540			150	C-FA4-2	4.00	20.0	91	182	16.0	33.0	А
				200	C-FA4-3	4.00	20.0	90	147	30.5	70.2	А
				23	C-FA5-1	4.00	20.0	84	180	20.5	54.9	А
	560			150	C-FA5-2	4.00	20.0	88	180	16.0	31.9	А
				200	C-FA5-3	3.99	20.0	88	148	29.0	67.2	А
				23	C-FA7-1	4.00	20.0	62	156	27.0	46.9	А
	580			150	C-FA7-2	4.00	20.0	67	151	18.0	34.0	А
	000		-	200	C-FA7-3	4.00	20.0	71	128	33.0	56.8	Α

表 25 MB-A3004 の高温熱処理材の引張試験結果(Step 1)

図 81 MB·A3004の高温熱処理材の 0.2%耐力(Step 1)

図 83 MB-A3004の高温熱処理材の伸び(Step 1)

図 84 MB-A3004の高温熱処理材の絞り(Step 1)

図 85 MB-A3004の押出まま材、長時間時効材、O 材、高温熱処理材の 0.2%耐力の 温度依存性の比較

図 86 MB-A3004の押出まま材、長時間時効材、O 材、高温熱処理材の引張強さ温 度依存性の比較

図 87

MB-A3004の520℃×10hr保持後の冷却速度と組織の関係(T-Z面,表面付近)

図 88

MB-A3004の520℃×10hr保持後の冷却速度と組織の関係(T-Z面,板厚中央)

++	符号	熱処理温度	熱処理時間	冷却速度	测力压用	ビッカース硬さ HV0.5				
材料	行方	(°C)	(hr)	(°C/hr)	側正位直	1	2	3	平均	
				COO to C 700	表面から 0.3mm	47.4	47.3	48.5	47.7	
	C-FA2			600 から700 (売込)	1/4t	48.4	49.5	49.1	49.0	
				(全市)	1/2t	49.8	49.0	49.7	49.5	
					表面から 0.3mm	46.8	47.3	47.0	47.0	
	C-FA16			10	1/4t	48.9	48.5	48.4	48.6	
					1/2t	48.9	48.9	48.7	48.8	
					表面から 0.3mm	47.3	47.1	47.0	47.1	
	C-FA15			5	1/4t	48.7	48.4	48.1	48.4	
					1/2t	48.3	48.6	48.9	48.6	
					表面から 0.3mm	45.3	45.3	46.1	45.6	
	C-FA8	520	10	2	1/4t	47.5	47.4	47.5	47.5	
				0.5	1/2t	47.9	47.7	48.1	47.9	
					表面から 0.3mm	45.1	45.0	45.7	45.3	
	C-FA17				1/4t	45.3	46.7	46.0	46.0	
					1/2t	47.2	47.0	47.3	47.2	
MB-42004	C-FA18				表面から 0.3mm	44.1	43.7	43.4	43.7	
MB A5004 供試材 C					1/4t	44.8	44.7	44.3	44.6	
DUPPARI C					1/2t	45.7	45.6	45.2	45.5	
					表面から 0.3mm	44.8	44.5	44.9	44.7	
	C-FA28			0.3	1/4t	44.7	45.2	44.8	44.9	
					1/2t	44.6	45.5	46.2	45.4	
					表面から 0.3mm	48.3	49.9	49.9	49.4	
	С		押出まま		1/4t	49.0	50.2	50.0	49.7	
					1/2t	49.9	50.0	50.1	50.0	
					表面から 0.3mm	48.4	48.4	48.6	48.5	
	0	350	19	10	1/4t	49.4	49.1	49.9	49.5	
					1/2t	50.0	49.9	50.5	50.1	
-					表面から 0.3mm	46.6	46.7	46.5	46.6	
	C2	250			1/4t	48.6	49.4	48.8	48.9	
			10000	不明	1/2t	49.2	48.7	47.9	48.6	
			10000	7197	表面から 0.3mm	47.2	46.4	46.7	46.8	
	C4	300			1/4t	48.0	48.1	48.3	48.1	
	04				1/2t	47.9	48.0	49.5	48.5	

表 26 MB-A3004 の高温熱処理材のビッカース硬さ測定結果(Step 2)

1/4t:表面より板厚の1/4だけ深い位置を示す。、1/2t:表面より板厚の1/2だけ深い位置、すなわち板厚中央を示す。

****	符号	熱処理温度	熱処理時間	冷却速度	测力压墨	ビッカース硬さ HV0.5				
竹科	行方	(°C)	(hr)	(°C/hr)	側正位直	1	2	3	平均	
				COO to C 700	表面から 0.3mm	50.9	51.8	51.0	51.2	
	C-FA19			600 から 700 (空澤)	1/4t	49.9	51.1	51.0	50.7	
				(全位)	1/2t	51.2	51.4	51.5	51.4	
					表面から0.3mm	51.1	51.8	51.0	51.3	
	C-FA22	350		2	1/4t	51.8	52.6	51.8	52.1	
					1/2t	52.8	52.4	53.0	52.7	
					表面から 0.3mm	52.3	52.7	51.5	52.2	
	C-FA23			1	1/4t	53.4	54.0	53.3	53.6	
					1/2t	52.5	54.3	52.5	53.1	
				600 から 700	表面から 0.3mm	48.3	48.7	49.2	48.7	
_	C-FA20	400		600から700 (空冷)	1/4t	50.1	50.7	50.4	50.4	
				(王川)	1/2t	50.6	50.4	51.4	50.8	
MD-12004	C-FA24		10	2	表面から0.3mm	49.5	50.7	50.8	50.3	
MB A3004 供試材 C					1/4t	51.7	52.1	51.5	51.8	
					1/2t	51.9	51.4	52.5	51.9	
					表面から0.3mm	50.1	50.6	50.7	50.5	
	C-FA25			1	1/4t	51.2	52.1	52.3	51.9	
					1/2t	53.3	52.5	52.1	52.6	
				600 から 700	表面から0.3mm	49.4	48.8	48.9	49.0	
	C-FA21			(空冷)	1/4t	49.4	51.0	50.2	50.2	
				(山王)	1/2t	50.4	49.6	50.1	50.0	
					表面から 0.3mm	50.2	50.7	49.9	50.3	
	C-FA26	450		2	1/4t	51.4	51.4	51.6	51.5	
					1/2t	52.1	51.6	52.6	52.1	
				1	表面から 0.3mm	50.6	49.6	49.8	50.0	
	C-FA27				1/4t	51.7	51.0	51.0	51.2	
	O FAZI				1/2t	51.8	51.1	51.8	51.6	

表 27 MB-A3004 の高温熱処理材のビッカース硬さ測定結果(Step 2')

1/4t:表面より板厚の1/4だけ深い位置を示す。、1/2t:表面より板厚の1/2だけ深い位置、すなわち板厚中央を示す。

材料	符号	熱処理温度	熱処理時間	冷却速度	試験片寸法	測定位置	導電率
11.64	6.61	(°C)	(hr)	(°C/hr)	(mm)	网元世世	(%IACS)
	C-FA2			600 から 700 (空冷)	15×14	_	38.5
	C-FA15			10	15×15		42.0
	C-FA16			5	15×15		42.7
	C-FA8	520		2	15×15		43.4
	C-FA17			1	15×15		44.1
	C-FA18			0.5	15×15		44.5
	C-FA28			0.3	15×15		44.3
	C-FA21			600 から 700 (空冷)	15×15		40.6
	C-FA26	450	10	2	15×15		43.3
MB-A3004	C-FA27			1	15×16		44.0
供試材 C	C-FA20			600 から 700 (空冷)	15×15		39.7
	C-FA24	400		2	15×15	板厚中央	41.2
	C-FA25			1	15×15		42.5
	C-FA19			600 から 700 (空冷)	15×15		37.3
	C-FA22	350		2	15×15		37.8
	C-FA23			1	15×15	-	38.3
	С		押出まま	·	15×15		36.0
	0材	350	19	10	15×16	-	37.3
	C2	250	10000	了旧	16×17		37.8
	C4	300	10000	个明	16×17		43.7
MB-A3004 供試材 A	A5	250	10000	不旧	18×18		39.0
MB-A3004	B2-2		10000	个叻	15×15		38.0
供試材 B	B4	300			15×15		44.2

表 28 MB-A3004 の高温熱処理材の導電率測定結果(Step 2)

導電率の単位は%IACSであり、焼なました純銅の20℃の電気伝導率に対する百分率である。

【測定方法】 板厚の 1/2 位置をバフ研磨にて仕上げて測定

測定器: GE Inspection Technologies 社製デジタル導電率計(オートシグマ 3000)

測定温度:室温

図 89 MB-A3004の高温熱処理材の導電率の冷却速度依存性 導電率の単位は%IACSであり、焼なました純銅の20℃の電気伝導率に対する百分率である。

		熱処理条件		試験	試験片	試験片、	†法(mm)	引 張 試 験					
材質	温度	時間	冷却速度	温度	符号	古尔	標点	0.2%耐力	引張強さ	伸び	絞り	破断	
	(°C)	(hr)	(°C/hr)	(°C)		- 但住	距離	(MPa)	(MPa)	(%)	(%)	位置	
			600 the 700	23	C-FA2-1	4.00	20.0	88	186	19.0	48.9	А	
			000 から 700	150	C-FA2-2	4.00	20.0	93	184	17.0	35.8	А	
			(生印)	200	C-FA2-3	4.00	20.0	88	143	35.5	67.6	А	
				23	C-FA16-1	4.01	20.0	89	188	19.5	57.2	А	
			10	150	C-FA16-2	4.01	20.0	90	179	21.0	51.1	А	
				200	C-FA16-3	4.00	20.0	85	135	42.0	77.4	А	
				23	C-FA15-1	4.01	20.0	96	190	18.5	50.9	А	
			5	150	C-FA15-2	4.01	20.0	96	181	19.5	47.9	А	
				200	C-FA15-3	4.01	20.0	87	138	40.5	74.5	А	
		10	2	23	C-FA8-1	4.00	20.0	97	190	18.5	56.6	А	
				150	C-FA8-2	4.00	20.0	91	176	22.0	51.5	А	
MB-42004	520			200	C-FA8-3	4.00	20.0	84	134	42.0	73.7	А	
MD A5004	520	10		23	C-FA17-1	4.00	20.0	88	183	20.0	52.4	А	
			1	150	C-FA17-2	4.01	20.0	92	171	21.5	54.5	А	
				200	C-FA17-3	4.01	20.0	81	127	37.5	79.4	А	
				23	C-FA18-1	3.99	20.0	78	175	19.5	53.2	А	
			0.5	150	C-FA18-2	4.00	20.0	81	162	23.0	56.6	А	
				200	C-FA18-3	4.00	20.0	75	124	38.5	77.0	А	
					93	C-FA28-4	4.00	20.0	83	167	19.0	55.1	А
			20	C-FA28-7	4.00	20.0	80	167	20.0	53.2	А		
		0.3	150	C-FA28-5	4.00	20.0	83	160	19.0	44.5	А		
			0.3	0.3 150		C-FA28-8	4.01	20.0	84	159	22.0	51.6	А
				200	C-FA28-6	4.00	20.0	77	132	34.5	74.5	А	
				200	C-FA28-9	4.00	20.0	75	125	34.5	75.7	А	

表 29 MB-A3004 の 520℃熱処理材の引張試験結果(Step 2)

破断位置 A:標点間中央付近 B:標点間中央部以外

図 90 MB-A3004 の高温熱処理材の 0.2%耐力(Step 2)

図 91 MB-A3004の高温熱処理材の引張強さ(Step 2)

(b)520℃×10hr, 2℃/hr 制御冷却

分析結果

(a)初期材

図 93 MB-A3004 初期材の TEM 明視野像

像

像

MB-A3004 高温熱処理材(520℃10hr 保持後 0.3℃/hr で制御冷却)の TEM 明視野

像

6.2.3 引張特性

(1)BC-A6N01

6.2.1 で決定した条件で完全焼なましを行った BC-A6N01 の室温から 350℃における引 張試験結果を表 30 及び表 31 に示す。この結果から、0.2%耐力、引張強さ及び伸びの試 験温度依存性を、初期材、長時間時効材とも比較して図 97 から図 99 に示す。0.2%耐力 は、完全焼なまし材よりも長時間時効材が若干低い傾向が認められた。室温と 200℃の 0.2%耐力と引張強さを比較しやすいように並べて図 100 から図 103 に示す。引張強さは 全焼なまし材と長時間時効材で有意な差は認められなかった。伸びでは完全焼なまし材が 長時間時効材よりも小さい。

(2)MB-A3004

6.2.2 で決定した条件で完全焼なましを行った MB-A3004 の室温から 350℃における引 張試験結果を表 32 から表 34 に示す。この結果から、0.2%耐力、引張強さ及び伸びの試 験温度依存性を、初期材、長時間時効材とも比較して図 104 から図 106 に示す。長時間 時効材と完全焼なまし材の 0.2%耐力と引張強さの差は小さい結果であった。この傾向をよ り明確に確認できるように、長時間時効材と完全焼なまし材の室温と 200℃の 0.2%耐力と 引張強さを図 107 から図 110 に示した。伸びには有意な差は認められないと考えられる。

熱	処理条	件	44-		計廠	弓	張 試	験 結	果													
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃/hr)	供試 材	試験片 符号	祗厥 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)													
				L6-FA31-1	23	75	158	17.5	27.2													
				L6-FA31-8	23	79	164	15.0	27.6													
				L6-FA31-15	23	81	165	15.0	28.0													
				L6-FA31-16	23	82	165	15.5	31.2													
				P6-FA-17	23	87	169	13.5	24.2													
				P6-FA-18	23	82	167	14.0	27.4													
				P6-FA-19	23	82	161	15.5	30.8													
				P6-FA-20	23	81	162	15.0	30.8													
				P6-FA-21	23	82	163	14.5	28.0													
				P6-FA-22	23	85	170	13.5	26.1													
				P6-FA-23	23	84	168	13.5	27.0													
				P6-FA-24	23	81	162	16.0	29.4													
510	10	0.5	ъ	P6-FA-25	23	85	166	14.5	26.8													
940	10	0.5	г	P6-FA-26	23	82	167	14.0	26.8													
				L6-FA31-2	100	70	131	17.0	33.4													
					L6-FA31-9	100	74	135	16.5	31.2												
				L6-FA31-3	150	62	108	19.0	40.5													
				L6-FA31-10	150	70	124	18.0	35.0													
				L6-FA31-4	200	57	91	22.5	49.0													
				L6-FA31-11	200	60	97	18.0	39.6													
				L6-FA31-5	250	51	76	20.5	53.9													
				L6-FA31-12	250	53	78	20.5	49.7													
																		L6-FA31-6	300	45	64	23.0
									L6-FA31-13	300	46	64	33.5	62.1								
				L6-FA31-7	350	37	54	23.5	59.3													
							L6-FA31-14	350	37	53	33.0	64.2										

表 30 BC-A6N01 の完全焼なまし材の引張試験結果(供試材 P)

熱	処理条	件	/11.		⇒4 ≣A	引	張 試	験 結	果													
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃/hr)	供試材	試験片 符号	訊 線 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)													
				06-FA31-1	23	83	168	15.5	26.4													
				06-FA31-8	23	82	173	14.5	28.0													
				O6-FA31-15	23	87	177	13.0	28.9													
				O6-FA31-16	23	86	176	14.0	24.6													
				06-FA-17	23	85	174	13.0	24.4													
				06-FA-18	23	87	176	12.5	25.5													
				O6-FA-19	23	87	179	12.5	23.6													
				O6-FA-20	23	90	179	13.0	24.8													
				06-FA-21	23	88	177	13.0	25.1													
				O6-FA-22	23	88	176	13.0	27.6													
				O6-FA-23	23	84	173	14.5	28.9													
				06-FA-24	23	83	176	13.0	24.2													
540	10	0.5	0	O6-FA-25	23	87	176	13.5	26.4													
540	10	0.5	0	O6-FA-26	23	88	176	14.0	27.0													
				O6-FA31-2	100	75	146	14.5	32.0													
															O6-FA31-9	100	76	147	14.5	27.2		
				O6-FA31-3	150	69	125	19.0	35.2													
									O6-FA31-10	150	67	116	17.5	30.6								
							06-FA31-4	200	59	99	21.5	43.8										
				06-FA31-11	200	58	89	28.0	56.0													
						O6-FA31-5	250	53	77	26.5	56.9											
												O6-FA31-12	250	54	79	27.0	54.8					
												-						O6-FA31-6	300	47	66	33.0
											-											O6-FA31-13
													06-FA31-7	350	35	50	27.0	62.9				
											06-FA31-14	350	36	51	22.0	55.1						

表 31 BC-A6N01の完全焼なまし材の引張試験結果(供試材 O)

図 97 BC-A6N01 初期材、長時間時効材及び完全焼なまし材の 0.2%耐力の温度依存性

図 99 BC-A6N01 初期材、長時間時効材及び完全焼なまし材の伸びの温度依存性

長時間時効材と完全焼なまし材の室温における 0.2%耐力の比較

図 101

長時間時効材と完全焼なまし材の 200℃における 0.2%耐力の比較

図 102 長時間時効材と完全焼なまし材の室温における引張強さの比較

図 103

長時間時効材と完全焼なまし材の 200℃における引張強さの比較

	熱処理条	件	445		計廠	弓	張試	験 結 身	艮
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃/hr)	供 試 材	試験片 符号	試 誤 度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び(%)	絞り (%)
				A-FA30-1	23	80	162	21.5	55.0
				A-FA30-8	23	75	161	21.5	60.4
				A-FA30-15	23	80	166	20.5	57.8
				A-FA30-16	23	79	167	20.5	58.4
				A-FA-17	23	74	145	28.0	62.6
				A-FA-18	23	80	170	20.0	54.8
				A-FA-19	23	81	166	20.5	59.4
				A-FA-20	23	82	166	21.0	56.0
				A-FA-21	23	79	167	20.5	57.3
				A-FA-22	23	82	168	19.5	52.7
				A-FA-23	23	82	166	19.5	55.4
				A-FA-24	23	85	166	21.0	56.3
				A-FA-25	23	83	166	20.0	55.7
				A-FA-26	23	80	168	20.5	54.9
				A-FA-27	23	83	169	20.0	57.0
				A-FA-29	23	86	168	19.5	57.1
-	10	0.0		A-FA-30	23	83	169	19.0	53.9
520	10	0.3	А	A-FA-31	23	82	167	19.5	54.8
				A-FA-32	23	82	168	20.0	59.1
				A-FA-33	23	82	167	20.5	60.1
				A-FA-34	23	81	170	21.0	59.1
				A-FA-35	23	81	169	19.5	56.1
				A-FA30-2	100	77	160	19.0	52.8
				A-FA30-9	100	86	165	18.0	49.8
				A-FA30-3	150	80	153	24.5	59.1
				A-FA30-10	150	83	153	23.5	55.2
				A-FA30-4	200	75	121	38.0	80.2
				A-FA30-11	200	74	120	40.5	79.5
				A-FA30-5	250	58	82	62.0	93.7
				A-FA30-12	250	58	83	54.0	93.0
				A-FA30-6	300	39	57	86.0	97.3
				A-FA30-13	300	39	58	88.0	97.2
				A-FA30-7	350	26	41	59.5	97.5
				A-FA30-14	350	27	41	63.0	97.4

表 32 MB-A3004 完全焼なまし材の引張試験結果(供試材 A)

奏	机処理条	件			A# #A	弓	張試	験結り	杲																	
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃/hr)	供試材	試験片 符号	訊 <i>騻</i> 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び(%)	絞り (%)																	
				B-FA30-1	23	85	173	20.5	52.6																	
				B-FA30-8	23	85	169	21.0	57.3																	
				B-FA30-15	23	83	166	20.5	55.7																	
				B-FA30-16	23	86	168	21.0	57.9																	
				B-FA-17	23	81	165	21.5	60.0																	
				B-FA-18	23	81	170	21.0	55.5																	
				B-FA-19	23	80	168	21.0	58.1																	
				B-FA-20	23	80	167	21.5	57.0																	
				B-FA-21	23	80	166	21.0	57.0																	
				B-FA-22	23	79	168	21.0	57.6																	
				B-FA-23	23	86	170	20.0	56.0																	
				B-FA-24	23	82	173	20.0	58.4																	
				B-FA-25	23	80	167	21.0	58.4																	
				B-FA-26	23	79	168	21.0	58.6																	
			B-FA-27	23	80	167	20.5	56.9																		
				B-FA-28	23	81	166	20.5	53.9																	
				B-FA-29	23	79	166	21.0	62.2																	
520	10	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	0.3 B	B-FA-30	23	79	166	20.5	59.2
																0.3 D	B-FA-31	23	78	170	20.5	56.6				
								B-FA-32	23	79	167	21.0	57.6													
															B-FA-33	23	77	167	21.5	56.3						
				B-FA-34	23	78	168	21.0	57.6																	
				B-FA-35	23	80	169	20.0	57.8																	
				B-FA30-2	100	91	168	18.5	50.9																	
				B-FA30-9	100	92	168	17.5	51.7																	
				B-FA30-3	150	86	157	23.0	58.9																	
				B-FA30-10	150	86	159	23.0	54.3																	
				B-FA30-4	200	77	121	38.5	78.5																	
				B-FA30-11	200	76	121	38.0	80.1																	
							B-FA30-5	250	59	83	62.0	94.1														
			B-FA30-12	250	59	83	54.0	93.6																		
				B-FA30-6	300	41	59	75.5	97.0																	
				B-FA30-13	300	40	59	69.0	97.1																	
				B-FA30-7	350	27	43	51.0	97.3																	
				B-FA30-14	350	27	42	62.5	97.8																	

表 33 MB-A3004 完全焼なまし材の引張試験結果(供試材 B)

奉	^热 処理条	件	711.		34 EA	弓	張試	験結り	長														
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃/hr)	供試材	試験片 符号	訊 誤 度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び(%)	絞り (%)														
				C-FA30-1	23	78	168	20.5	53.6														
				C-FA30-8	23	79	166	20.5	54.8														
				C-FA30-15	23	79	170	20.5	56.8														
				C-FA30-16	23	84	174	19.5	57.8														
				C-FA-17	23	86	167	20.5	55.5														
				C-FA-18	23	83	167	21.0	57.2														
				C-FA-19	23	83	166	20.5	56.7														
				C-FA-20	23	82	167	20.0	55.2														
				C-FA-22	23	85	169	19.5	56.2														
				C-FA-23	23	85	167	21.0	56.8														
				C-FA-24	23	79	166	20.0	55.7														
				C-FA-25	23	84	167	20.0	57.1														
				C-FA-26	23	83	168	21.0	56.8														
				C-FA-27	23	84	169	20.0	56.1														
			C-FA-28	23	86	170	19.5	60.4															
		10 0.3 C		C-FA-29	23	88	169	21.0	55.2														
5 90	10		0.3 C		0.2 C	C-FA-30	23	83	168	19.5	55.6												
520	10			0.3 C	0.3 C	0.3 C	0.3 0	0.3	0.3	0.3 C	0.3 C	0.5 C	0.3 C	0.3 C	0.3 C	C-FA-31	23	88	169				
						C-FA-32	23	90	176	19.0	55.1												
														C-FA-33	23	79	169	20.5	55.4				
				C-FA-34	23	77	168	19.5	56.1														
				C-FA-35	23	81	170	19.5	54.0														
				C-FA30-2	100	83	165	18.0	49.2														
				C-FA30-9	100	86	166	17.5	47.8														
				C-FA30-3	150	82	156	22.5	55.8														
				C-FA30-10	150	81	158	22.5	52.7														
				C-FA30-4	200	74	122	36.5	77.9														
						C-FA30-11	200	77	123	38.5	78.8												
				C-FA30-5	250	59	85	48.5	91.3														
				C-FA30-12	250	61	86	46.5	92.0														
				C-FA30-6	300	41	60	86.0	97.2														
				C-FA30-13	300	42	60	86.5	97.3														
				C-FA30-7	350	28	43	51.5	97.3														
				C-FA30-14	350	28	44	99.0	97.1														

表 34 MB-A3004 完全焼なまし材の引張試験結果(供試材 C)

図 104 MB-A3004 初期材、長時間時効材及び完全焼なまし材の 0.2%耐力の温度依存 性

図 105 MB-A3004 初期材、長時間時効材及び完全焼なまし材の引張強さの温度依存性

図 106 MB-A3004 初期材、長時間時効材及び完全焼なまし材の伸びの温度依存性

図 107 長時間時効材と完全焼なまし材の室温における 0.2%耐力の比較

長時間時効材と完全焼なまし材の室温における引張強さの比較

長時間時効材と完全焼なまし材の 200℃における引張強さの比較

図 110

長時間時効材と完全焼なまし材の 200℃における引張強さの比較

6.2.4 長時間時効及び完全焼なましの条件の拡散の観点での評価

長時間時効及び完全焼なましが、バスケットの使用される 200℃で 60 年間という期間 を評価するのに妥当であるかについて、溶質原子の平均拡散距離の観点からも考察した。

固体内の拡散はフィックの法則により表され、定常状態では単位時間に拡散する溶質の 量は、濃度勾配に比例する。その比例定数が拡散係数であり、拡散係数は、単位面積を通 して、単位時間に拡散する溶質の量を表している。温度 *T*(K)における拡散係数は、拡散の 活性化エネルギー *Q*(kJ/mol)、気体定数 *R*(J/(mol・K))及び振動数因子と呼ばれる定数 *D*₀(m²/s)を用いて、以下のようなアレニウス型の関数として表される。

$$D = D_0 \exp\left(-\frac{Q}{RT}\right)$$

アルミニウム中における各溶質元素の活性化エネルギーと振動数因子について報告されている値を表 35に示した[1]。時間 *t*(s)の間に溶質が移動する平均の拡散距離 *x*(m)は、拡散係数と時間の積の平方根に比例し、以下のように表される。

$x \propto \sqrt{Dt}$

長時間時効及び完全焼なましの際の各溶質元素の拡散距離を、200℃で 60 年間の実機供 用中のそれに対する比として表 36 に示す。200℃で 60 年間に比べ、長時間時効と完全 焼なましの拡散距離が大きいことから、供用期間中の熱影響として拡散の観点から十分 な熱暴露を実施していると判断できる。なお、本評価では考慮していないが、完全焼な まし処理において高温保持後の冷却過程が長期間にわたるため、冷却期間を考慮すると 非常に大きな拡散距離の比となり、十分な熱暴露を実施している。

表	35	アルミ	ニウム	合金中(の溶質元素	の拡散デー	タ	[1]
---	----	-----	-----	------	-------	-------	---	-----

			· · · · · · · · · · · · · · · · · · ·		
元	素	元素記号	D ₀ (m ² /s)	Q (kj/mol)	測定温度 (K)
Aluminum	アルミニウム	Al	1.71×10 ⁻⁴	142	729-916
Antimony	アンチモン	Sb	9 ×10 ⁻⁶	122	721-893
Beryllium	ベリリウム	Be	5.2 ×10 ⁻³	163	773-908
Cadmium	カドミウム	Cd	1.04×10 ⁻⁴	124	714-907
Cesium	セシウム	Cs	1.28×10 ⁻¹³	38.1	453-873
Chromium	クロム	Cr	1.84×10 ⁻¹	253	859-922
Cobalt	コバルト	Co	4.64×10 ⁻²	174	. 695-927
Copper	銅	Cu	1.5 ×10 ⁻⁵	126	623-903
Gallium	ガリウム	Ga	4.9 ×10 ⁻⁵	122	680-925
Germanium	ゲルマニウム	Ge	4.8 ×10 ⁻⁵	121	674-926
Gold	金	Au	2.2 ×10 ⁻⁴	134	563-923
Indium	インジウム	In	1.16×10 ⁻⁴	123	715-925
Iron	鉄	Fe	1.2 ×10 ⁻⁵	135	293-915
Lead	鉛	РЪ -	5.0×10^{-3}	146	777-876
Lithium	リチウム	Li	4.5 ×10 ⁻⁴	139	690-870
Magnesium	マグネシウム	Mg	1.24×10 ⁻⁴	131	667-928

· 元	素	元素記号	D ₀ (m²/s)	Q (kJ/mol)	測定温度 (K)
Manganese	マンガン	Mn	2.2 ×10 ⁻⁵	120	723-923
Mercury	水銀	Hg	1.53×10 ⁻³	142	718-862
Molybdenum	モリブデン	Mo	1.0 ×10 ⁻¹³	54.8	673-903
Nickel	ニッケル	Ni	2.9 ×10 ⁻¹²	65.7	623-903
Niobium	ニオブ	Nb	1.7 ×10 ⁻¹¹	82.4	673-893
Palladium	パラジウム	Pd	1.9 ×10 ⁻¹¹	84.5	673-903
Silicon	けい素	Si	3.5 ×10 ⁻⁵	124	617-904
Silver	銀	Ag	1.18×10 ⁻⁵	116	644-928
Sodium	ナトリウム	Na	6.7 ×10 ⁻⁴	97.1	719-863
Thallium	タリウム	TI	1.16×10 ⁻²	153	737-862
Tin	すず	Sn	3.1 ×10 ⁻¹¹	84.5	673-903
Uranium	ウラン	U	1 ×10 ⁻⁵	117	798-898
Vanadium	バナジウム	V ·	6.1 ×10 ⁻¹²	82.0	673-903
Zinc	亜鉛	Zn	1.77×10 ⁻⁵	117	438-918
Zirconium	ジルコニウム	Zr	7.3 ×10 ⁻²	242	804-913

* 任意の温度 T (K) における拡散係数 D (m²/s) は D=D₀exp (-Q/RT)
で与えられる。ここで、D₀:振動数項、Q:拡散の活性化エネルギー、R:気体定数(8.3145 J/mol・K) を示す。

表 36	アルミニウム母相中における各溶質元素の平均拡散距離の評価

溶質	拡散距離の比 (200℃で 60 年間の拡散距離を 1 とした際の比を示す)					
元素	長時間	引時効	完全焼なまし			
	300℃ ×10000hr	300℃ ×20000hr	$520^\circ C imes 10 hr$	$540^\circ C imes 10 hr$		
Al	3.2	4.5	6.3	8.3		
Si	2.2	3.0	2.5	3.2		
Fe	2.7	3.9	4.4	5.7		
Cu	2.2	3.2	2.8	3.5		
Mg	2.5	3.6	3.6	4.6		
Mn	2.0	2.8	2.0	2.6		
6.2.5 衝撃特性

(1)BC-A6N01

表 37 に BC-A6N01 の初期材及び完全焼なまし材の-40℃における V ノッチシャルピ 一衝撃試験結果を示す。完全焼なましに伴う衝撃特性の変化を把握するために、これらを グラフ化したものを図 111 に示す。T-S 方向に比べ、L-S 方向では衝撃値が 20%程度低い。 L-S 方向、T-S 方向共に完全焼なまし処理によって衝撃値が低下した。しかし、図 112 か ら図 123 に示す破面写真から分かるように、完全焼なまし材も全面がディンプルに覆われ た典型的な延性破面を呈している。

(2)MB-A3004

表 38 に MB-A3004 の初期材及び完全焼なまし材の-40℃における V ノッチシャルピ 一衝撃試験結果を示す。完全焼なましに伴う衝撃特性の変化を把握するために、これらを グラフ化したものを図 124 に示す。L-S 方向に比べ、T-S 方向では衝撃値が 20%程度低い。 L-S 方向、T-S 方向共に完全焼なまし処理による衝撃値の変化は明確でなく、ほぼ特性は 変化しないと考えられた。試験片の破面観察の結果、図 125 から図 131 に示すように、全 てがディンプルに覆われた典型的な延性破面を呈していた。

状態	供試材	試験片 符号	方向	試験 温度 (℃)	吸収 エネルギー (J)	衝撃値 (J/cm²)	横膨 出量 (mm)	延性 破面率 (%)
	P6	P6S-L1	L-S	-40	18	23	1.09	100
	P6	P6S-L2	L-S	-40	20	25	1.25	100
	P6	P6S-L3	L-S	-40	17	22	1.03	100
	P6	P6S-T1	T-S	-40	24	30	1.15	100
d and	P6	P6S-T2	T-S	-40	24	30	1.19	100
初期	P6	P6S-T3	T-S	-40	24	30	1.16	100
	06	O6S-L1	L-S	-40	20	25	1.03	100
16.0	06	O6S-L2	L-S	-40	22	27	1.27	100
	06	O6S-L3	L-S	-40	19	24	1.09	100
	06	O6S-T1	T-S	-40	25	32	1.01	100
	06	06S-T2	T-S	-40	26	32	0.89	100
	06	06S-T3	T-S	-40	25	32	0.93	100
	P6	P6-FA-L1	L-S	-40	12	16	0.77	100
ŝ	P6	P6-FA-L2	L-S	-40	13	17	0.99	100
0h	P6	P6-FA-L3	L-S	-40	13	16	0.73	100
型 、 、 工	P6	P6-FA-T1	T-S	-40	15	19	0.84	100
0°C	P6	P6-FA-T2	T-S	-40	15	19	0.86	100
(54 司	P6	P6-FA-T3	T-S	-40	15	19	0.87	100
hr ∮	06	O6-FA-L1	L-S	-40	15	18	0.86	100
rt ℃.//	06	O6-FA-L2	L-S	-40	15	18	0.85	100
$\frac{1}{2}$	06	O6-FA-L3	L-S	-40	16	20	1.08	100
医 一 進 一	06	O6-FA-T1	T-S	-40	19	24	0.82	100
完	06	O6-FA-T2	T-S	-40	19	24	0.82	100
	06	06-FA-T3	T-S	-40	19	24	0.87	100

表 37 BC-A6N01の初期材と完全焼なまし材の V ノッチシャルピー衝撃試験結果

 図 111 BC-A6N01の初期材と完全焼なまし材のVノッチシャルピー衝撃試験における 衝撃値の比較結果

(写真は表示倍率で撮影し、紙面の都合により80%に縮小)

図 113 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 A6S-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 114 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 P6S-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 115 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 O6S-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 116 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 P6-FA-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 117 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 O6-FA-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 118 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 P6S-TL1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 119 BC-A6N01 の衝撃試験片破面の SEM 観察像(試験片符号 A6S-L1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 120 BC-A6N01 の衝撃試験片破面の SEM 観察像試験片(符号 P6S-L1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 121 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 O6S-L1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 122 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 P6-FA-L1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 123 BC-A6N01の衝撃試験片破面の SEM 観察像(試験片符号 O6-FA-L1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

状態	供試材	試験片 符号	方向	試験 温度 (℃)	吸収 エネルギー (J)	衝擊値 (J/cm ²)	横膨出 量 (mm)	延性 破面率 (%)	備考
	А	IL1	L-S	-40	62	78	2.62	100	
	А	IL2	L-S	-40	65	81	2.88	100	
	А	IL3	L-S	-40	62	78	2.76	100	
	А	IT1	T-S	-40	44	55	1.64	100	
	Α	IT2	T-S	-40	44	55	1.86	100	
	Α	IT3	T-S	-40	46	58	1.91	100	
	В	IB4	L-S	-40	54	68	2.53	100	
+	В	IB5	L-S	-40	60	74	2.58	100	
月本	В	IB6	L-S	-40	60	74	2.70	100	
刀其	В	IB1	T-S	-40	44	55	2.25	100	
÷ Υ -́	В	IB2	T-S	-40	44	55	2.09	100	
	В	IB3	T-S	-40	44	55	2.11	100	
	С	IC1	T-S	-40	41	51	2.15	100	
	С	IC2	T-S	-40	41	51	2.02	100	
	С	IC3	T-S	-40	41	51	2.06	100	
	С	IC4	L-S	-40	57	71	2.77	100	
	С	IC5	L-S	-40	57	71	2.54	100	
	С	IC6	L-S	-40	60	74	2.78	100	
	А	A-FA-L1	L-S	-40	59	74	1.81	100	
	А	A-FA-L2	L-S	-40	58	72	1.58	100	
-	Α	A-FA-L3	L-S	-40	58	72	2.16	100	
型	А	A-FA-T1	T-S	-40	44	55	1.27	100	
~	А	A-FA-T2	T-S	-40	46	57	1.53	100	
间角	А	A-FA-T3	T-S	-40	49	62	1.38	100	
노 바 바	В	B-FA-L1	L-S	-40	61	76	1.95	100	
L C/h	В	B-FA-L2	L-S	-40	62	77	1.94	100	
°°£ 20	В	B-FA-L3	L-S	-40	64	80	2.06	100	
売 ^た 0.	В	B-FA-T1	T-S	-40	50	63	1.91	100	
년 년 1	В	B-FA-T2	T-S	-40	49	62	1.89	100	
彤 Oh	В	B-FA-T3	T-S	-40	50	62	1.88	100	
×1	С	C-FA-L1	L-S	-40	54	67	1.87	100	
0 C	С	C-FA-L2	L-S	-40	53	67	1.90	100	
54_{0}	С	C-FA-L3	L-S	-40	51	64	1.83	100	
\smile	С	C-FA-T1	T-S	-40	43	54	1.80	100	
	С	C-FA-T2	T-S	-40	43	54	1.78	100	
	С	C-FA-T3	T-S	-40	43	53	1.74	100	

表 38 MB-A3004の初期材と完全焼なまし材のVノッチシャルピー衝撃試験結果

図 124 MB-A3004の初期材と完全焼なまし材の V ノッチシャルピー衝撃試験における 衝撃値の比較結果

図125 MB-A3004の衝撃試験片破面のSEM観察像(試験片符号CS-LT1)(写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 126 MB-A3004の衝撃試験片破面の SEM 観察像(試験片符号 A-FA-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 127 MB-A3004の衝撃試験片破面の SEM 観察像(試験片符号 B-FA-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 128 MB-A3004の衝撃試験片破面の SEM 観察像(試験片符号 C-FA-T1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 129 MB-A3004の衝撃試験片破面の SEM 観察像(試験片符号 CS-TL1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 130 MB-A3004の衝撃試験片破面の SEM 観察像(試験片符号 A-FA-L1)
(写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

図 131 MB-A3004の衝撃試験片破面の SEM 観察像(試験片符号 B-FA-L1) (写真は表示倍率で撮影し、紙面の都合により 80%に縮小)

6.2.6 まとめ

材料を高温で保持した後で、過飽和な溶質元素による固溶強化が生じないように非常に 小さい冷却速度で冷却を行う完全焼なまし処理の条件を決定した。完全焼なまし材の引張 特性は、長時間時効材とほぼ同程度に低下し、小さい差に着目すれば、MB-A3004では長 時間時効材よりも低い強度が得られた。一方で、BC-A6N01では引張試験の温度によって は長時間時効材における強度低下がより大きい場合もあることが判明した。

長時間時効処理も完全焼なまし処理も、最高 200℃程度で 60 年間というバスケットの 使用条件を、比較的短期間で評価するためのものであり、その間に生じる組織的変化を完 全に再現することはできないが、両者ともに 3 章で述べたようにバスケット供用中の組織 変化の機序を考慮した上で、十分に保守的な強度評価が可能なように条件を決定したもの である。以降の節で述べる許容応力の策定は、長時間時効材と完全焼なまし材のデータを 両方用いて保守的に定める。

6.3 設計許容応力の確認

6.3.1 トレンドカーブ法の適用

温度変化による 0.2%耐力および引張強さをトレンドカーブ法によって評価した。トレン ドカーブ法では、各温度における引張試験結果を室温における値で除して規格化した係数 を温度の多項式で近似し、これに別途定めた室温の規定値を乗じることにより、各温度に おける 0.2%耐力と引張強さを評価する。すなわち

a. 室温の 0.2%耐力の規定値: Syo

- b. $R_Y \times S_{y_0}$
- ここで

$\bar{R}_{Y} = \frac{温度T \mathcal{O} 0.2\% 耐力}{室 温 \mathcal{O} 0.2\% 耐力}$

各温度での値はそれより低温の値を超えないように修正する。上記 a および b のうち小さ い方の値を設計降伏点(S_v 値)とする。

引張強さについても同様に

a. 室温の引張強さの規定値: Sr

b. $R_T \times S_T$

ここで

 $\overline{R}_T = \frac{温度Tの降伏点(耐力)}{室温の降伏点(耐力)}$

本検討では各温度で複数の引張試験を行っているため、室温と温度 T における 0.2% 耐 力は、各供試材の平均値を用いた。例えば MB-A3004 では A、B 及び C という 3 供試材が あるため、それぞれの熱処理条件に対して各温度で \overline{R}_r 及び \overline{R}_r のプロットは各3点となる。

ここでは 6.1 節で述べた長時間時効材のうち強度が最も低下して安定化していると考え られる 250℃及び 300℃で 10000hr の時効を行った長時間時効材のデータ、6.2 節で示し た完全焼なまし材のデータの合計3系列を用いてそれぞれ独立にトレンドカーブを作成し た。設計降伏点と設計引張強さの策定は、これらが与える値のうち最も低いものを使用す ることとした。つまり3系列でそれぞれ独立に算出された \overline{R}_{Y} のうち、最小値を $\overline{R}_{Y,MN}$ として 用いる。

(1)室温の規定値の定め方

室温における 0.2%耐力と引張強さの規定値である S_{v0} と S_T には、室温における複数の 試験データの 99%包絡下限、すなわちデータの平均値から標準偏差の 2.33 倍を減じた値 を用いる。前述のように長時間時効材2系列、完全焼なまし材1系列の合計3系列のデー タを用いるため、 S_{y0} と S_T も3系列で独立に計算し、最小値を $S_{y0,MIN}$ と $S_{T,MIN}$ とする。

完全焼なまし材の室温引張試験結果は十分なデータ数があり、信頼できる標準偏差を求 めることができると考えられる。表 39 と表 42 に完全焼なまし材についての規定値算出 結果を示す。一方、長時間時効材の室温引張試験データの数は多くないため、多数のデー タがある完全焼なまし材の室温引張試験結果で求めた標準偏差を用いて推定した。具体的 には、完全焼なまし材の 0.2%耐力および引張強さの平均に対する標準偏差の比(変動係数) が長時間時効材でも同じであるとの仮定を行い、長時間時効材の平均値にこの変動係数を 乗ずることで長時間時効材の標準偏差を推定した。表 40 と表 43 にこの操作を行った結 果を示す。

(2)変動係数の温度依存性及び状態依存性の確認

トレンドカーブで各温度における 0.2%耐力と引張強さを評価することは、室温の規定値 に見込んだ安全裕度の比率(0.2%耐力または引張強さの大きさに対する安全裕度の比)が、 他の温度でも同じであると仮定することに他ならない。そこで室温で確認した変動係数が 他の温度においても大きく変わらないことを確認するため、300℃でも試験数を増してそ のばらつきを検討した。この時、用いる供試材は、長時間時効材や完全焼なまし材よりも ばらつき要因を多く含む可能性のある初期材とした。

BC・A6N01 の完全焼なまし材では、室温の 0.2%耐力と引張強さの変動係数は、それぞ れ 0.0393 と 0.0365 であった。300℃で初期材を対象に 16 本の引張試験(表 45)を行って 評価した変動係数は、表 41 に示すようにそれぞれ 0.0391 と 0.0414 であった。この大き さは室温の場合と同程度と考えられる。

MB-A3004 の完全焼なまし材では、室温の 0.2%耐力と引張強さの変動係数は、それぞ れ 0.0378 と 0.0217 であった。300℃で 18 本の引張試験(表 46)を行って評価した変動係 数は、表 44 に示すようにそれぞれ 0.0337 と 0.0237 であった。この大きさは室温の場合 と同程度と考えられる。

これらのことから、完全焼なまし材では室温と 300℃において、0.2%耐力と引張強さの 平均値に対する標準偏差の比は同等であることが確認された。これにより室温の多数の試 験データから得られたばらつきを変動係数として各温度に適用することには大きな問題は ないと考えられる。また、完全焼なまし材と初期材とで変動係数が同等であることから、 同じ変動係数を長時間時効材に適用することも可能であると考えられる。

評価対象	完全焼なまし材		
項目	0.2%耐力	引張強さ	
データ数	28	28	
室温試験平均值 (MPa)	84.0	170.1	
室温試験標準偏差 (MPa)	3.31	6.21	
99%包絡下限(MPa) (平均值-2.33×標準偏差)	76.3	155.6	
変動係数	0.0393	0.0365	

表 39 BC-A6N01の室温 99% 包絡下限の算出(完全焼なまし材)

(表 30 と表 31 掲載の室温データより算出)

表 40 BC-A6N01の室温 99%包絡下限の算出(長時間時効材)

評価対象	長時間 (250℃×1	時効材 10000hr)	長時間時効材 (300℃×10000hr)		
項目	0.2%耐力	引張強さ	0.2%耐力	引張強さ	
データ数	2	2	2	2	
室温試験平均值 (MPa)	72.5	169.5	73.5	167.0	
室温試験標準偏差 (MPa) (完全焼なまし材の変動係数× 長時間時効材の平均で推定)	2.85	6.19	2.89	6.09	
99%包絡下限 (MPa) (平均值-2.33×標準偏差)	65.9	155.1	66.8	152.8	

表 41 BC-A6N01の 300℃における引張試験結果

評価対象	初期材	
項目	0.2%耐力	引張強さ
データ数	1	6
供試材	0,	Р
室温試験平均值(MPa)	47.8	63.9
室温試験標準偏差(MPa)	1.87	2.64
変動係数	0.0391	0.0414

評価対象	完全焼なまし材		
項目	0.2%耐力	引張強さ	
データ数	67	67	
室温試験平均值 (MPa)	81.6	167.5	
室温試験標準偏差(MPa)	3.08	3.63	
99%包絡下限 (MPa) (平均值-2.33×標準偏差)	74.4	159.1	
変動係数	0.0378	0.0217	

表 42 MB-A3004の室温 99%包絡下限の算出結果(完全焼なまし材)

(表 32、表 33 及び表 34 掲載の室温データから算出)

表 43 MB-A3004の室温 99%包絡下限の算出結果(長時間時効材)

評価対象	長時間 (250℃×1	時効材 10000hr)	長時間時効材 (300℃×10000hr)		
項目	0.2%耐力	引張強さ	0.2%耐力	引張強さ	
データ数	6	6	6	6	
室温試験平均值 (MPa)	83.2	181.2	80.7	185.8	
室温試験標準偏差(MPa) (完全焼なまし材の変動係数× 長時間時効材の平均で推定)	3.14	3.93	3.05	4.03	
99%包絡下限(MPa) (平均值-2.33×標準偏差)	75.8	172.0	73.6	176.4	

表 44 MB·A3004の300℃における引張試験結果

評価対象	初其	月材
項目	0.2%耐力	引張強さ
データ数	1	8
供試材	A, I	3, C
室温試験平均值 (MPa)	49.7	69.8
室温試験標準偏差(MPa)	1.67	1.65
変動係数	0.0337	0.0237

	/11.	学校	引	張 試	験 結	果
状態	供 試 材	訊験 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)
		300	48	63	33.0	73.6
		300	48	64	44.5	77.4
		300	47	64	29.0	74.4
	0	300	48	65	27.5	73.0
	0	300	48	65	26.5	72.3
		300	47	64	27.5	72.8
		300	47	63	27.5	70.7
		300	42	55	33.0	80.8
1/1 1/1	Р	300	47	63	38.5	78.4
		300	47	63	29.5	76.8
		300	50	66	33.5	72.0
		300	50	66	34.0	76.0
		300	49	66	28.5	72.7
		300	49	65	39.0	77.4
		300	49	66	26.5	73.7
		300	49	65	36.5	78.2

表 45 BC-A6N01 初期材の 300℃における追加引張試験結果

	<i>/</i> #•	封驗	引	張 試	験 結	果
状態	供 試 材	祗 读 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)
		300	51	72	63.0	95.3
		300	50	70	67.0	95.8
	۸	300	51	70	46.5	94.0
	A	300	51	70	64.5	95.4
		300	52	72	67.0	96.0
		300	54	73	61.0	94.8
		300	48	68	54.0	94.8
		300	49	68	53.5	94.5
初 胡 차	р	300	48	67	53.5	94.6
1/1 7/1 1/1	Б	300	48	68	50.5	94.8
		300	48	68	50.0	94.7
		300	48	69	54.0	95.3
		300	50	71	56.5	95.6
		300	50	71	55.5	95.3
	C	300	49	70	53.5	94.8
	U	300	50	71	51.0	95
		300	48	69	55.5	94.8
		300	50	70	51.0	93.6

表 46 MB-A3004 初期材の 300℃における追加引張試験結果

(1)BC-A6N01のトレンドカーブ

図 132 と図 133 に 0.2%耐力と引張強さのトレンドカーブをそれぞれ示す。0.2%耐力 は完全焼なまし材が長時間時効材よりも低い傾向を示す。引張強さでは長時間時効材と完 全焼なまし材は同等であり、いずれも強度が十分低下して安定した状態になっていること が推察される。

(2)MB-A3004 のトレンドカーブ

図 134 と図 135 に 0.2%耐力と引張強さのトレンドカーブをそれぞれ示す。0.2%耐力 では完全焼なまし材と長時間時効材で同様の結果であった。引張強さでは長時間時効材の 方が完全焼なまし材よりも若干低い強度を示している。

図 132 BC-A6N01の完全焼なまし材及び長時間時効材(250℃, 300℃で 10000hr)の
引張試験結果から作成した 0.2%耐力のトレンドカーブ

図 133 BC-A6N01の完全焼なまし材及び長時間時効材(250℃, 300℃で 10000hr)の
引張試験結果から作成した引張強さのトレンドカーブ

図 134 MB-A3004の完全焼なまし材及び長時間時効材(250℃, 300℃で 10000hr)の
引張試験結果から作成した 0.2%耐力のトレンドカーブ

図 135 MB-A3004の完全焼なまし材及び長時間時効材(250℃, 300℃で 10000hr)の
引張試験結果から作成した引張強さのトレンドカーブ

6.3.2 クリープ及びクリープ試験結果

(1)BC-A6N01

表 47 から表 49 に BC-A6N01 初期材及び長時間時効材のクリープ破断試験結果を示す。 図 136 にこれらのデータを用いて作成した応力-破断時間プロットを示す。

図 137 に破断強さを Larson-Miller パラメータ(LMP)で整理したものを示す。最小二乗 法によって応力の常用対数の 3 次多項式で近似した以下の式を用いて、10⁵hr クリープ破 断強さの推定を行った。このとき、LMP における定数 *C*も併せて最小二乗法により最適 化を行い、*C*=16.26 を得た。

 $(T+273.15)(16.26+\log t_r)\times 10^{-3}=67.45-93.31 (\log \sigma)+51.14(\log \sigma)^2-9.773(\log \sigma)^3$

ここで t_r は破断時間(hr)、 σ は応力(MPa)、LMP: 定数 16.26 の Larson-Miller パラメー タ、LMP= $T(\log(t_r) + C)$ である。

種々の温度において得られた 10⁵hr クリープ破断強さの最小値 *S*_{Rmin}を表 50 に示す。 下限値はデータから推定される 95%信頼下限値(90%信頼区間の下限値)とした。貯蔵期 間中のバスケットへの負荷応力は 1MPa 以下であるため、クリープ破断に対してはバスケ ット材としての強度が十分であると評価される。

表 51 に BC-A6N01 のクリープ試験結果を示す。これらの中には、クリープ破断試験と 同一の試験片で取得したデータも含まれる。図 138 に最小クリープ速度と応力の関係を示 す。

図 138 に LMP で整理した最小クリープ速度と応力の関係を示す。最小クリープ速度に 対する LMP= $T(C - \log(\varepsilon))$ における定数 Cも最小二乗法により最適化を行い、C=16.65を 得た。最小クリープ速度 $\dot{\varepsilon}$ (hr⁻¹)と応力 o(MPa)の関係は以下のように求められた。

(T+273.15) (16.65-log $\dot{\varepsilon}$)×10⁻³= 44.69 -40.41(log σ) +13.06(log σ)² -0.866(log σ)³

許容応力策定に使用するために、表 52 に 0.01% / 1000 時間のクリープひずみ速度を生じる応力 *Sc* を上の式によって算出した結果を示した。

(2)MB-A3004

表 53 に MB-A3004 初期材及び長時間時効材のクリープ破断試験結果を示す。図 139 にこれらのデータを用いて作成した応力・破断時間プロットを示す。

図 140 に破断強さを Larson-Miller パラメータ(LMP)で整理したものを示す。最小二乗 法によって応力の常用対数の 2 次多項式で近似した以下の式を用いて、10⁵hr クリープ破 断強さおよび 60 年間クリープ破断強さの推定を行った。このとき、LMP における定数 *C* も併せて最小二乗法により最適化を行い、*C*=14.16 を得た。この近似線は上に凸となり、 高温・長時間側で保守側の評価となっている。

 $(T+273.15)(14.16+\log t_r) \times 10^{-3} = 14.365 - 3.404(\log \sigma) - 0.221 (\log \sigma)^2$

ここで t_r は破断時間(hr)、 σ は応力(MPa)、LMP: 定数 14.16 の Larson-Miller パラメー タ、LMP= $T(\log(t_r) + C)$ である。

許容応力策定に使用するために、種々の温度において得られた 10⁵hr クリープ破断強さ の最小値 *Sumin* を表 54 に示す。下限値はデータから推定される 95%信頼下限値(90%信 頼区間の下限値)とした。貯蔵期間中のバスケットへの負荷応力は 1MPa 以下であるため、 クリープ破断に対してはバスケット材としての強度が十分であると評価される。

図 141 に最小クリープ速度と応力の関係を示す。図 142 に LMP で整理した最小クリ ープ速度と応力の関係を示す。最小クリープ速度に対する LMP=*T*(*C*-log (*ɛ*))における定 数 *C*も最小二乗法により最適化を行い、*C*=17.09 を得た。最小クリープ速度g(hr⁻¹)と応力 *o*(MPa)の関係は以下のように求められた。

(T+273.15) $(17.09 \cdot \log \frac{1}{2}) \times 10^{\cdot 3} = 17.886 \cdot 4.359(\log \sigma) \cdot 0.262 (\log \sigma)^2$

許容応力策定に使用するために、表 55 に 0.01% / 1000 時間のクリープひずみ速度を生じる応力 *Sc* を上の式によって算出した結果を示した。
符		温度	広力	破断時間	破断伸び	絞り
号	状態	(°C)	(MPa)	(hr)	(%)	(%)
-	初期材	200	56	18	29	76
	初期材	200	48	86	22	82
	初期材	200	44	112	33	88
	初期材	200	40	503	33	87
	初期材	250	40	2	33	86
	初期材	250	32	97	24	88
D	初期材	250	31	188	31	88
	初期材	250	28	810	33	87
	初期材	300	28	16	34	89
	初期材	300	25	146	30	88
	初期材	300	23	443	32	84
	初期材	300	22	2128	18	49
	初期材	100	115	4	33	68
	初期材	100	110	706	30	69
	初期材	150	85	55	30	78
	初期材	150	80	190	30	80
	初期材	150	70	916	27	81
	初期材	150	62.1	1437	26	83
	初期材	150	54.6	4547	24	81
	初期材	200	61	8	31	82
	初期材	200	56	20	33	80
	初期材	200	48	57	30	86
	初期材	200	44	145	34	87
	初期材	200	40	743	30	88
	初期材	200	40.8	353	37	88
	初期材	200	35.3	2893	25	87
	初期材	200	34.3	8629	33	90
Е	初期材	200	31.8	>13310.9	-	-
	初期材	200	30	>13922.1	-	-
	初期材	250	41	3	36	88
	初期材	250	40	3	35	89
	初期材	250	32	95	27	89
	初期材	250	31	106	32	89
	初期材	250	28	430	28	89
	初期材	250	25	>15218.5	-	-
	初期材	250	22.5	>15218.5	-	-
	初期材	300	32	2	32	90
	初期材	300	28	5	37	91
	初期材	300	25	84	28	90
	初期材	300	23	360	32	89
	初期材	300	22	946	25	82
	初期材	300	20.4	1098	24	76
	初期材	300	17.7	>15218.5	-	-

表 47 BC-A6N01 のクリープ破断試験結果(1/3)

次ページへ続く

符		温度	応力	破断時間	破断伸び	絞り
号	状態	(°C)	(MPa)	(hr)	(%)	(%)
	初期材	200	56	11	29	83
	初期材	200	48	77	30	87
	初期材	200	44	101	33	88
	初期材	200	40	379	31	87
	初期材	250	40	1	32	9
Б	初期材	250	32	46	34	89
г	初期材	250	31	55	50	90
	初期材	250	28	237	31	90
	初期材	300	28	4	40	92
	初期材	300	25	28	34	90
	初期材	300	23	75	52	92
	初期材	300	22	142	31	88
	初期材	200	58	36.1	27	80
	初期材	200	48	254.7	23	81
	初期材	200	47	295.1	33	80
	初期材	200	45	511.6	28	81
	初期材	250	42	5.5	28	83
-	初期材	250	35	71.6	24	84
ղ	初期材	250	33	167.2	26	85
	初期材	250	32	1292.7	25	83
	初期材	300	30	14.5	26	85
	初期材	300	25	1051.7	17	53
	初期社	200	20	1776 1	11	
	初期村	300	23	1776.1	11	23
	初期材	300	22	4256	8	3
	初期材	150	90	102.4	30	70
	初期材	150	66 6	301.3 1651.6	21	75
	初期材	150	57.4	>7056	-	-
	初期材	200	58	40.7	27	80
	初期材	200	48	293.3	28	81
	初期材	200	47	202	31	84
	初期材	200	45	350.9	29	83
	初期材	200	37.9	1034.5	33	85
	初期材	200	33	5639.4	26	83
	初期材	200	30	>13922	-	-
	初期材	250	42	3.4	31	84
Κ	初期材	250	35	22.4	24	86
	初期材	250	33	37	40	87
	初期材	250	32	112.6	36	58
	初期材	250	30.2	153.6	31	86
	初期材	250	26.8	1265	33	83
	初期材	250	24.5	>11970	-	-
	初期材	250	22.2	>11941.2	-	-
	初期材	300	30	3	33	87
	初期材	300	25	81.8	32	54
	初期材	300	23	134	35	82
	初期材	300	22	227	21	73
	初期材	300	19	3384.1	11	25

表 48 BC-A6N01のクリープ破断試験結果(2/3)

次ページへ続く

符	心心	温度	応力	破断時間	破断伸び	絞り
号	认悲	(°C)	(MPa)	(hr)	(%)	(%)
		250	25.5	282.5	27.5	86.2
		250	28	55.8	28.6	86.4
		300	23	29.8	33.3	87.1
	300°C	300	22	133.6	39.0	83.7
Κ	×20000h	300	19.5	2247.2	10.2	10.2
	r時効	300	18.5	3746.3	7.7	5.9
		300	17.5	4927.7	7.7	9.3
		350	18.5	3.07	35.8	88.4
		350	19.3	10.3	49.5	85.6
	初期材	200	58	27	27	78
	初期材	200	48	146	26	82
	初期材	200	47	179.7	32	83
	初期材	200	45	311.4	26	81
	初期材	250	42	3.8	26	84
т	初期材	250	35	35.4	24	86
	初期材	250	33	57.1	34	85
	初期材	250	32	393.2	27	85
	初期材	300	30	3.7	29	85
	初期材	300	25	138.4	25	74
	初期材	300	23	594.5	18	45
	初期材	300	22	791.1	10	31
	初期材	150	90	67.2	29.5	62
	初期材	150	80	118.8	28	63
	初期材	150	75	249.6	29.5	66
	初期材	150	50.6	5525.5	27.1	73
Μ	初期材	250	35.1	12.4	37	83
	初期材	250	33.6	18.3	36.5	80
	初期材	250	30	49.9	32	80
	初期材	250	25	481.4	25.7	79
	初期材	250	19.6	>9943.4	-	-

表 49 BC-A6N01 のクリープ破断試験結果(3/3)

図 136 BC-A6N01の初期材及び長時間時効材の応力・破断時間プロット

図 137 BC-A6N01の初期材及び長時間時効材の応力-破断時間の Larson-Miller パラメータによる整理結果

表 50 種々の温度における BC-A6N01 の 10⁵hr 破断強さの最小値(MPa)

温度(℃)	75	100	125	150	175	200	225	250
10⁵hr 破断応力	(01,0)	C1 C	45 4	947	99.0	99 C	20.4	10.1
(最小)	(81.9)	61.6	40.4	34.7	28.0	23.6	20.4	18.1

本表に関する注意

・ 最小値は、試験データから推定される 95%信頼下限値(90%信頼区間の下限値)とした。

・ 275℃以上においては 10⁵hr が破断した試験片が存在する LMP 範囲外となるため、275℃以上における 10⁵hr 破断強さの推定を行わなかった。

・ 括弧内は試験温度範囲外への外挿であるが、6.3.4 で明らかとなるように、許容引張応力 Sの評価 で保守的な結果を与えることが分かっているため算定した。

711.					Ξ.		
供		温度	応力	破断	最小	() 做) 断	破断
武 ++	状態	(°C)	(MPa)	時間	クリーフ速度		彩り (0()
젬				(hr)	(%/hr)	(%)	(%)
_	初期材	200	44	112	2.51×10^{-2}	33	88
D	初期材	250	31	188	1.89×10^{-2}	31	88
	初期材	300	23	443	7.65×10^{-3}	32	84
	初期材	150	54.6	4547	4.08×10^{-4}	24	81
	初期材	200	44	145	1.70×10^{-2}	34	87
	初期材	200	40.8	353	6.87×10^{-3}	37	88
	初期材	200	35.3	2893	5.88×10^{-4}	25	87
	初期材	200	31.8	>13311	$<1.09 \times 10^{-4}$	-	-
Б	初期材	200	30	>13922	$<3.24 \times 10^{-5}$	-	-
Е	初期材	250	31	106	3.57×10^{-2}	32	89
	初期材	250	25	>15219	$< 8.41 \times 10^{-5}$	-	-
	初期材	250	22.5	>13287	$<3.95 \times 10^{-5}$	-	-
	初期材	300	23	360	1.35×10^{-2}	32	89
	初期材	300	20.4	1098	3.70×10^{-3}	24	76
	初期材	300	17.7	>15219	$<3.54 \times 10^{-5}$	-	-
	初期材	200	44	101	4.35×10^{-2}	33	88
F	初期材	250	31	55	1.38×10^{-1}	50	90
	初期材	300	23	75	1.35×10^{-1}	52	92
	初期材	200	47	295	6.40×10^{-3}	33	80
J	初期材	250	33	167	1.35×10^{-2}	26	85
	初期材	300	23	1776	4.97×10^{-4}	11	25
	初期材	150	57.4	>7056	3.16×10^{-4}	-	-
	初期材	200	47	202	1.22×10^{-2}	31	84
	初期材	200	37.9	1035	2.46×10^{-3}	33	85
	初期材	200	33	5639	7.09×10^{-4}	26	83
	初期材	200	30	>13922	<5.20×10 ⁻⁵	-	-
	初期材	250	33	37	1.55×10^{-1}	40	87
	初期材	250	30.2	154	2.51×10^{-2}	31	86
	初期材	250	26.8	1265	2.31×10^{-3}	33	83
	初期材	250	24.5	>11970	$<2.10 \times 10^{-4}$	-	-
Κ	初期材	250	22.2	>11941	<6.12×10 ⁻⁵	-	-
	初期材	300	23	134	3.72×10^{-2}	35	82
	初期材	300	19	3384	4.44×10-4	11	25
		250	28	55.8	7.00×10^{-2}	28.6	86.4
		250	25.5	282.5	1.20×10^{-2}	27.5	86.2
	300° C	300	23	29.8	1.50×10^{-1}	33.3	87.1
	$\times 20000$ hr	300	22	133.6	3.50×10^{-2}	39	83.7
	時効	300	19.5	2247	4.00×10^{-4}	10.2	10.2
		300	18.5	3746	2.40×10^{-4}	7.7	5.9
		300	17.5	4928	1.20×10^{-4}	7.7	9.3
	初期材	200	47	180	1.25×10^{-2}	32	83
\mathbf{L}	初期材	250	33	57	7.20×10^{-2}	34	85
	初期材	300	23	595	4.98×10^{-3}	18	45
м	初期材	150	50.6	5526	7.92×10^{-4}	27.1	73
IVL	初期材	250	19.6	>9943.4	2.85×10^{-4}	-	-

表 51 BC-A6N01 のクリープ試験結果

 図 138 BC-A6N01の初期材及び長時間時効材の応力・最小クリープ速度の Larson-Miller パラメータによる整理結果

表 52 BC-A6N01 に 0.01% / 1000 時間のクリープひずみ速度を生じる応力 Sc (MPa)

温度(℃)	150	175	200	225	250	275
S_{C}	38.2	30.9	26.0	22.4	19.7	17.5

本表に関する注意

275℃以上においては 10⁵hr に対応する LMP が、破断した試験片が存在する範囲外となるため、
 275℃以上における 10⁵hr 破断強さの推定を行わなかった。

						-			
符号	供試材	時効処理	温度 (℃)	応力 (MPa)	破断時間 (hr)	伸 び (%)	絞 り (%)	最小 クリー プ 速度 (hr ⁻¹)	備考
200℃ ×34.5MPa	А		200	34.5	> 10376	_	_	6.0×10^{-6}	未破断
A-1	А		200	64.8	171.6	31.3	86.1	_	注 1
A-2	А	初期材	200	44.1	3016.6	39.9	89.9	_	注 1
B-00-05	В		200	64.8	318	49.0	84.4	4.7×10^{-5}	
C-00-05	С		200	25.2	> 5831	_		5.3×10^{-7}	
CA1	А		200	55.0	922.7	62.0	90.0	_	注 1
CAN1	А	250°C	200	37.0	3036.7	65.2	91.0	_	注 1
CA5	А	200 C	200	36.0	> 14870	_		3.0×10^{-6}	未破断
CBN1	В	×10000hr	200	36.9	5320.9	54.2	89.8	_	注 1
CCN1	С		200	36.9	7842.7	58.7	89.0	_	注 1
A200-2	А		200	70.9	12.3	65.3	80.7	1.2×10^{-2}	
A200-3	А		200	51.2	135.7	77.7	87.8	5.1×10^{-4}	
A200-4	А		200	46.5	475.7	81.6	90.5	2.8×10^{-4}	
A200-1	А		200	42.1	476.4	57.8	91.1	1.1×10^{-4}	
A200-5	А		200	33.6	16043.6	49.5	91.3	5.3×10^{-6}	
B200-1	В		200	70.9	14.7	61.3	83.1	9.4×10 ⁻³	
CB1	В	200%	200	55.0	210.4	57.0	87.0	_	注 1
CB9	В	300 C	200	40.0	1054.0	74.6	89.3	3.2×10^{-5}	
CB15	В	×10000nr	200	46.0	838.5	67.2	86.3	1.3×10^{-4}	
CB10	В		200	36.0	2538.7	91.1	91.7	2.0×10^{-5}	
CB5	В		200	31.3	16380.4	58.5	88.7	2.3×10^{-6}	
C200-1	С		200	64.3	33.1	64.8	78.5	3.7×10^{-3}	
CC1	С	-	200	55.0	303.9	61.0	88.0	_	注 1
CC17	С		200	46.0	903.8	57.6	85.6	1.1×10 ⁻⁴	
CC7	С		200	36.0	3737.2	52.5	90.0	1.3×10^{-5}	

表 53 MB-A3004 初期材及び時効材のクリープ及びクリープ破断試験結果

符号	供試材	時効処理	温度 (℃)	応力 (MPa)	劯	故断時間 (hr)	伸 び (%)	絞 り (%)	最小 クリー プ 速度 (hr ^{.1})	備考
A-4	А		250	30.8		472.3	66.8	92.8	—	注 1
A-6	А		250	21.5	>	11208	—	—	—	未破断
250°C×25.2	А	初期材	250	25.2		2542.7	65.5	93.5	3.5×10^{-5}	
250°C×20.3	А	171 791 191	250	20.3	>	8454.3	_	_	1.5×10^{-5}	未破断
B-00-06	В		250	27.7		1860.1	51.3	93.2	2.4×10^{-5}	
C-00-06	С		250	24.1	>	5830.8	_	_	5.4×10^{-6}	未破断
CA2	Α		250	34.5		571.4	64.0	93.0	—	注 1
CAN2	Α	250℃	250	23.4		3615.6	60.6	97.2	—	注 1
CA6	Α	×10000hr	250	22.1		10007.6	68.0	94.4	5.7×10^{-6}	
CBN2	В		250	23.4		3940.8	60.6	93.7	—	注 1
CCN2	С		250	23.4		6145.9	55.1	93.5	—	注 1
A250-1	А		250	47.2		5.8	85.2	89.3	$2.5 imes 10^{-2}$	
A250-2	А		250	42.4		13.9	80.2	90.2	9.3×10^{-3}	
A250-3	А		250	26.6		1508.2	54.5	93.2	7.5×10^{-5}	
B250-1	В		250	42.4		13.4	80.6	86.7	9.2×10^{-3}	
CB2	В		250	34.5		97.6	85.0	92.0	—	注 1
CB16	В		250	28.0		1104.2	69.9	92.2	8.2×10^{-5}	
CB11	В	300°C	250	22.1		7900.6	54.3	92.6	1.2×10^{-5}	
B250-2	В	×10000hr	250	18.6	>	17546	_	_	4.5×10^{-6}	未破断
CB6	В		250	18.6	>	17555		_	1.1×10^{-6}	未破断
CC2	С		250	34.5		153.0	78.0	89.0	—	注 1
C250-1	С		250	29.6		265.9	82.7	92.1	4.3×10^{-4}	
CC14	С		250	28.0		1385.9	64.5	91.9	6.0×10^{-5}	
CC8	С		$\overline{250}$	22.1		7656.3	57.5	93.0	1.0×10^{-5}	
CC5	С		250	18.6	>	17483			8.0×10 ⁻⁷	未破断

表 53(続き) MB-A3004 初期材及び時効材のクリープ及びクリープ破断試験結果

符号	供試材	時効処理	温度 (℃)	応力 (MPa)	破	断時間 (hr)	伸 び (%)	絞 り (%)	最小 クリー プ 速度 (hr [.] 1)	備考
A-8	А		300	19.5		395.3	61.3	94.7	_	注 1
A-10	А		300	20		288.7	57.8	95.0	_	注 1
A-9	Α	初期材	300	18.9		356.5	67.9	96.0	5.7×10^{-4}	
B-00-07	В		300	21.5		250.8	69.4	92.0	4.6×10^{-4}	
C-00-07	С		300	19		1056.5	74.8	92.9	8.3×10 ⁻⁵	
CAN3	Α		300	14.3		4399.6	46.6	94.5		注 1
CA7	Α	250°C	300	13.6		7149.2	58.4	93.0	7.4×10^{-6}	
CA9	Α	200 U	300	11.2	>	13577			1.8×10^{-6}	未破断
CBN3	В	×10000hr	300	14.4		4805.5	63.4	90.3		注 1
CCN3	C		300	14.3		9651.8	46.6	94.5	_	注 1
A300-2	Α		300	28.5		11.6	80.7	93.4	1.3×10^{-2}	
A300-3	Α		300	25.3		27.2	76.4	92.9	5.4×10 ⁻³	
A300-4	Α		300	22.5		129.8	72.1	93.3	1.3×10 ⁻³	
A250-4	Α		300	10.3	>	16731			2.6×10^{-6}	未破断
CB3	В		300	22.5		135.9	71.0	95.0	_	注 1
CB17	В		300	18.0		1107.3	72.1	94.5	1.3×10^{-4}	
B300-1	В	200℃	300	17.1		1012.3	52.4	93.2	1.1×10^{-4}	
CB12	В	>1000br	300	13.6		8601.9	61.3	91.6	7.2×10^{-6}	
B0	В	×1000011	300	11.2	>	18065			1.6×10^{-7}	未破断
CC3	С		300	22.5		134.4	75.0	94.0		注 1
CC15	С	-	300	18		1523.2	70.2	91.9	8.0×10 ⁻⁵	
C300-2	С		300	14.2		5506.6	33.5	88.1	1.2×10^{-5}	
CC9	С		300	13.6		4962.7	74.1	92.3	1.5×10^{-5}	
CO	С		300	11.2	>	17968			7.3×10 ⁻⁷	未破断
CB12	С		300	13.6		8601.9	61.3	91.6	7.1×10^{-6}	

表 53(続き) MB-A3004 初期材及び時効材のクリープ及びクリープ破断試験結果

符号	供試材	時効処理	温度 (℃)	応力 (MPa)	破断時間 (hr)	伸 び (%)	絞 り (%)	最小 クリー プ 速度 (hr ⁻¹)	備考
A-00-7	А		350	18	24.1	62.3	92.9	8.5×10^{-3}	
A-00-8	А		350	13	248.9	_	_	7.4×10^{-4}	
B-00-7	В		350	18	29.8	89.1	93.1	6.3×10^{-3}	
B-00-8	В	机树树	350	13	322.9	_	_	5.1×10^{-4}	
C-00-7	С		350	18	45	82.7	91.6	3.9×10^{-3}	
C-00-8	С		350	15	164.8	_	_	1.1×10 ⁻³	
CA4	Α	050°C	350	19.5	17.0	97.1	95.1	1.1×10^{-2}	
CA8	А	200 C	350	8.1	2985	57.1	89.8	1.4×10^{-5}	
CA3	А	×10000nr	350	7.4	5481.5	57.1	87.2	7.3×10^{-6}	
A350-2	А		350	13.3	132.5	76.7	94.6	1.2×10^{-3}	
CB8	В		350	19.5	13.4	78.7	94.2	1.2×10^{-2}	
B350-1	В		350	15.1	37.8	97.0	96.7	5.8×10^{-3}	
CB4	В		350	14.0	219.5	77.0	96.0	_	注 1
CB18	В		350	11	647.7	65.9	93.7	1.9×10^{-4}	
CB13	В		350	8.4	2203.6	91.0	92.7	3.0×10^{-5}	
CB7	В	200°C	350	7.4	7030.9	60.5	91.9	6.5×10^{-6}	
CC6	С	300 C	350	19.5	15.3	98.7	93.2	9.2×10^{-3}	
CC4	С	×10000nr	350	14.0	248.1	62.0	95.0	—	注 1
C350-2	С		350	13.3	271.3	98.2	95.4	3.6×10^{-4}	
CC16	С	-	350	11.0	989	68.0	87.3	8.9×10^{-5}	
C350-1	С		350	9.9	1068.9	58.3	89.7	5.7×10^{-5}	
C350-3	С		350	8.1	1861.0	42.3	84.0	2.2×10^{-5}	
CC10	С		350	8.4	2419.8	80.6	92.0	1.6×10^{-5}	
CC11	С		350	7.0	8965.8	_	_	3.9×10^{-6}	

表 53(続き) MB-A3004 初期材及び時効材のクリープ及びクリープ破断試験結果

MB-A3004の初期材及び長時間時効材の応力・破断時間プロット

図 140 MB-A3004 の初期材及び長時間時効材の応力・破断時間の Larson-Miller パラメータによる整理結果

表 54 種々の温度における MB-A3004 の 10⁵hr 破断強さの最小値(MPa)

温度(℃)	75	100	125	150	175	200	225	250	275	300
105hr 破断応										
力	(61.9)	(47.4)	(36.3)	41.2	31.3	23.7	17.8	13.4	10.0	7.4
(最小)										

本表に関する注意

・ 最小値は、試験データから推定される 95% 信頼下限値(90% 信頼区間の下限値)とした。

・ 325℃以上においては 10⁵hr に対応する LMP が、破断した試験片が存在する範囲外となるため、
 325℃以上における 10⁵hr 破断強さの推定を行わなかった。

・ 括弧内は試験温度範囲外への外挿であるが、6.3.4 で明らかとなるように、許容引張応力 Sの評価 で保守的な結果を与えることが分かっているため算定した。

図 141 MB-A3004の初期材及び長時間時効材の応力-最小クリープ速度の Larson-Miller パラメータによる整理結果

 図 142 MB-A3004の初期材及び長時間時効材の応力・最小クリープ速度の Larson-Millerパラメータによる整理結果

温度(℃)	150	175	200	225	250	275	300
Sc	40.7	31.1	23.7	18.0	13.6	10.3	7.7

表 55 MB-A3004 に 0.01% / 1000 時間のクリープひずみ速度を生じる応力 Sc (MPa)

6.3.3 設計許容応力の算出方法

得られたデータを用いて BC-A6N01 と MB-A3004 の設計降伏点 *Sy*、設計引張強さ *Su*、設計応力強さ *Sm*、許容引張応力 *S*の決定を行った。それぞれの算出方法を以下に示す。

(1)設計引張強さ Su

6.3.1 で述べたように室温における引張強さの規定値にトレンドカーブが与える温度による強度低下を示す係数を乗じたものを *Su*とする。

(2)設計降伏点 S_y

6.3.1 で述べたように室温における 0.2%耐力の規定値にトレンドカーブが与える温度に よる強度低下を示す係数を乗じたものを *Sy*とする

(3)設計応力強さ Sm

次の表に従って各温度で求められる数値のうち、最も小さな値を超えない整数を設計 応力強さ(Sm値)とする。

弓	張強さ	降伏点(耐力)				
$\frac{1}{3}S_T$	$\frac{1}{3}S_T\overline{R}_T$	$\frac{2}{3}S_{y0}$	$\frac{2}{3}S_{y0}\overline{R}_{Y}$			

Sy0 :常温の降伏点(耐力)の規定値

 $\bar{R}_{r} = \frac{温度Tの降伏点(耐力)}{常温の降伏点(耐力)}$

ST:常温の引張強さの規定値

 $\overline{R}_{T} = \frac{温度Tの引張強さ} 常温の引張強さ$

ここで、各温度での値はそれより低温の値を超えないように修正する。

なお、引張強さに係る $\frac{1}{3}S_r R_r$ には係数 1.1 を乗じることが JSME 材料規格 新規材料 採用ガイドラインに規定されている。これは、鉄鋼材料に見られる青熱脆性等の特性を 考慮して設定されたものであるが、アルミニウム合金について同様の特性を有すること が明確ではないため、保守的な評価となるよう、係数 1.0 を採用する。

(4)許容引張応力*S*

次の表に従って各温度で求められる数値のうち、最も小さな値を超えない整数を許容 引張応力(*S*値)とする。

引張	強さ	降付	犬点	クリープ破断強さ	クリーフ [。] 速度
$\frac{1}{3.5}S_T$	$\frac{1}{3.5}S_T\overline{R}_T$	$\frac{2}{3}S_{y0}$	$\frac{2}{3}S_{yo}\overline{R}_{Y}$	$F_{avg}S_{R\min}$	1.0 <i>Sc</i>

Sy0 :常温の降伏点(耐力)の規定値

Sr :常温の引張強さの規定値

 $\overline{R}_{Y} = \frac{温度Tの降伏点(耐力)}{常温の降伏点(耐力)}$

 $\overline{R}_{T} = \frac{温度Tの引張強さ} 常温の引張強さ$

S_{Rmin} : 100,000 時間での破断を生じる最小応力

Sc : 0.01% / 1000 時間のクリープひずみ速度を生じる応力の平均値

 $F_{avg}: S_{Rmin}$ に適用する係数。ただし、0.67を超えない値とする。

 $F_{avg} = 10^{(1/n)}$

n : 100000 時間でのクリープ破断時間の対数と応力の対数との曲線の傾き
 で下式で表される負の値
 n=Δlog(クリープ破断時間)/ Δlog(応力)

ここで、各温度での値はそれより低温の値を超えないように修正する。

なお、引張強さに係る $\frac{1}{3}S_r R_r$ には係数 1.1 を乗じることが JSME 材料規格 新規材料 採用ガイドラインに規定されている。これは、鉄鋼材料に見られる青熱脆性等の特性を 考慮して設定されたものであるが、アルミニウム合金について同様の特性を有すること が明確ではないため、保守的な評価となるよう、係数 1.0 を採用する。

同じく引張強さに係る $\frac{1}{3}S_{T}\overline{R}_{T}$ における係数 $\frac{1}{3.5}$ について、本適用先のバスケット構造物として溶接構造物(溶接を認めない)ではないこと、適正な品質管理を行うことから $\frac{1}{3.5}$ を採用する。

また、クリープに係る *F*_{avg}*S*_{Rmin} は、JSME 材料規格 新規材料採用ガイドラインで は *F*_{avg}*S*_{Ravg}及び 0.8*S*_{Rmin}の最小値を採用する規定である。本評価では 60 年間の供用期 間を考慮し、保守的な評価となるよう *F*_{avg}*S*_{Rmin}を採用する。

6.3.4 設計許容応力の算出結果

(1)BC-A6N01

表 56 に BC-A6N01 の設計降伏点 S_y、設計引張強さ S_u、設計応力強さ S_m、許容引張応 力 Sの算出結果を示す。また、参考として、許容引張応力 Sの算出における各計算値の大 小関係の温度依存性を図 143 に示す。BC-A6N01 では、S値が引張強さで決定される温度 域からクリープ破断強さで決定される温度域への移行は、100℃と 125℃の間で生じる。

(2)MB-A3004

表 57 に MB·A3004 の設計降伏点 S_y、設計引張強さ S_u、設計応力強さ S_m、許容引張応 力 Sの算出結果を示す。参考として、許容引張応力 Sの算出における各計算値の大小関係 の温度依存性を図 144 に示す。MB·A3004 においても、S値が引張強さで決定される温度 域からクリープ破断強さで決定される温度域への移行は 100℃と 125℃の間で起こる。

								温度(℃)						
		20	75	100	125	150	175	200	225	250	275	300	325	350
	完全焼なまし	155.6	-	-	-	-	-	-	-	-	-	-	-	-
(1) S_T (MPa)	250°C×10000hr	155.1	-	-	-	-	-	-	-	-	-	-	-	-
	300°C×10000hr	152.8	-	-	-	-	-	-	-	-	-	-	-	-
$(2)S_{T,MIN}$ (MPa)	3種の最小値	152.8	-	-	-	-	-	-	-	-	-	-	-	-
	完全焼なまし	1.0	0.88	0.82	0.76	0.69	0.62	0.56	0.50	0.45	0.41	0.38	0.35	0.31
$(3)R_T$	250°C×10000hr	1.0	0.89	0.83	0.77	0.70	0.63	0.56	0.50	0.44	0.39	0.36	0.32	0.28
	300°C×10000hr	1.0	0.89	0.84	0.78	0.71	0.63	0.56	0.49	0.44	0.40	0.36	0.33	0.29
$(4)R_{T, MIN}$	(3)の最小値(*)	1.0	0.88	0.82	0.76	0.69	0.62	0.56	0.49	0.44	0.39	0.36	0.32	0.28
$(5)1/3 \times S_{T, MIN}$ (MF	Pa)	50.9	-	-	-	-	-	-	-	-	-	-	-	-
$(6)1/3\times S_{T, MIN}\times R_{T, M}$	mn (MPa)	50.9	44.8	41.9	38.7	35.2	31.8	28.5	25.2	22.3	20.1	18.1	16.3	14.3
	完全焼なまし	76.3	-	-	-	-	-	-	-	-	-	-	-	-
(7) S_{y0} (MPa)	250°C×10000hr	65.9	-	-	-	-	-	-	-	-	-	-	-	-
	300°C×10000hr	66.8	-	-	-	-	-	-	-	-	-	-	-	-
(8) <i>Sy0, MIN</i> (MPa)	(7)の最小値	65.9	-	-	-	-	-	-	-	-	-	-	-	-
(9) R_Y (9) R_Y (10) $R_{Y, MIN}$ (9) C (11) $2/3 \times S_{y0, MIN}$ (MPa)	完全焼なまし	1.0	0.92	0.88	0.84	0.79	0.75	0.70	0.66	0.62	0.59	0.55	0.50	0.43
	250°C×10000hr	1.0	0.94	0.94	0.93	0.90	0.85	0.79	0.72	0.66	0.62	0.58	0.53	0.44
	300°C×10000hr	1.0	0.91	0.91	0.89	0.85	0.79	0.72	0.66	0.61	0.57	0.55	0.51	0.41
$(10)R_{Y,MIN}$	(9)の最小値(*)	1.0	0.91	0.88	0.84	0.79	0.75	0.70	0.66	0.61	0.57	0.55	0.50	0.41
$(11)2/3 \times S_{y0, MIN}$ (N	IPa)	43.9	-	-	-	-	-	-	-	-	-	-	-	-
$(12)2/3 \times S_{y0,MIN} \times R_{Y,}$	_{MIN} (MPa)	43.9	40.1	38.6	36.8	34.8	32.8	30.8	28.9	26.7	25.2	24.0	22.1	18.0
(13)最小值((5), (6), ((11)及び(12)の最小値)	43.9	40.1	38.6	36.8	34.8	31.8	28.5	25.2	22.3	20.1	18.1	16.3	14.3
(14) Su (MPa)	$S_{T,MIN} imes R_T$	152	134	125	116	105	95	85	75	66	60	54	48	42
(15) Sy (MPa)	$S_{yOMIN}\!\! imes\!R_Y$	65	60	57	55	52	49	46	43	40	37	35	33	27
(16) <i>Sm</i> (MPa)	(13)を超えない整数	43	40	38	36	34	31	28	25	22	20	18	16	14
$(17)1/3.5 \times S_{T,MIN}$ (1	MPa)	43.7	-	-	-	-	-	-	-	-	-	-	-	-
$(18)1/3.5 \times S_{T,MIN} \times R_{T}$	r, MIN (MPa)	43.7	38.4	35.9	33.1	30.2	27.2	24.4	21.6	19.1	17.2	15.5	13.9	12.2
$(19)2/3 \times S_{y0,MIN}$ (M	(Pa)	43.9	-	-	-	-	-	-	-	-	-	-	-	-
$(20)2/3 \times S_{y0,MIN} \times R_{Y,I}$	MIN (MPa)	43.9	40.1	38.6	36.8	34.8	32.8	30.8	28.9	26.7	25.2	24.0	22.1	18.0
$(21)S_{Rmin}$ (MPa)		-	81.9	61.6	45.4	34.7	28	23.6	20.4	18.1	-	-	-	-
$(22)F_{avg}$		-	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	-	-	-	-
$(23)F_{avg} \times S_{Rmin}$ (M	Pa)	-	54.9	41.3	30.4	23.2	18.8	15.8	13.7	12.1	-	-	-	-
$(24)1.0 \times S_C$ (MPa)		-	-	-	-	38.2	30.9	26	22.4	19.7	17.5	-	-	-
(25)最小值((18),(19)	,(20),(23)及び(24)の最小値)	43.7	38.4	35.9	30.4	23.2	18.8	15.8	13.7	12.1	-	-	-	-
S (MPa)	(25)を超えない整数	43	38	35	30	23	18	15	13	12	-	-	-	-

表 56 BC-A6N01の設計降伏点 S_y、設計引張強さ S_u、設計応力強さ S_m、許容引張応力 Sの決定

(*)低温側の値を超えない値とする。

			温度(°C)											
		20	75	100	125	150	175	200	225	250	275	300	325	350
	完全焼なまし	159.1	-	-	-	-	-	-	-	-	-	-	-	-
(1) S_T (MPa)	250°C×10000hr	172.0	-	-	-	-	-	-	-	-	-	-	-	-
	300°C×10000hr	176.4	-	-	-	-	-	-	-	-	-	-	-	-
(2) $S_{T,MIN}$ (MPa)	3種の最小値	159.1	-	-	-	-	-	-	-	-	-	-	-	-
	完全焼なまし	1.0	0.97	0.99	0.98	0.93	0.84	0.73	0.61	0.50	0.41	0.36	0.31	0.26
$(3)R_T$	250°C×10000hr	1.0	0.96	0.95	0.92	0.85	0.76	0.66	0.55	0.46	0.39	0.35	0.30	0.24
	300°C×10000hr	1.0	0.92	0.95	0.95	0.91	0.81	0.69	0.56	0.45	0.37	0.32	0.29	0.23
$(4)R_{T, MIN}$	(3)の最小値(*)	1.0	0.92	0.92	0.92	0.85	0.76	0.66	0.55	0.45	0.37	0.32	0.29	0.23
$(5)1/3 \times S_{T, MIN}$ (MF	Pa)	53.0	-	-	-	-	-	-	-	-	-	-	-	-
$(6)1/3S_{T, MIN} \times R_{T, MIN}$	_N (MPa)	53.0	48.9	48.9	48.7	45.2	40.4	34.8	29.3	23.9	19.6	17.2	15.5	12.1
	完全焼なまし	74.4	-	-	-	-	-	-	-	-	-	-	-	-
(7) S_{y0} (MPa)	250° C×10000hr	75.8	-	-	-	-	-	-	-	-	-	-	-	-
$(0) C \qquad (MD)$	300°C×10000hr	73.6	-	-	-	-	-	-	-	-	-	-	-	-
(8) <i>Sy0, MIN</i> (MPa)	(7)の最小値	73.6	-	-	-	-	-	-	-	-	-	-	-	-
	完全焼なまし	1.0	1.04	1.05	1.04	1.02	0.98	0.92	0.83	0.73	0.61	0.49	0.39	0.33
$\begin{array}{c} (9)R_Y \\ \hline 30 \\ \hline (10)R_Y \\ \hline \end{array} $	250° C×10000hr	1.0	0.97	0.99	1.01	1.00	0.97	0.92	0.84	0.74	0.63	0.53	0.43	0.35
	300°C×10000hr	1.0	0.99	1.01	1.02	1.02	0.99	0.94	0.86	0.75	0.63	0.51	0.41	0.35
(10)R _{Y, MIN} (9)の最小値(*)		1.0	0.97	0.97	0.97	0.97	0.97	0.92	0.83	0.73	0.61	0.49	0.39	0.33
$(11)2/3 \times S_{y0, MIN}$ (N	IPa)	49.0	-	-	-	-	-	-	-	-	-	-	-	-
$(12)2/3 \times S_{y0,MIN} \times R_{Y,}$	_{MIN} (MPa)	49.0	47.8	47.8	47.8	47.8	47.7	44.9	40.9	35.7	30.0	24.2	19.2	16.4
(13)最小值((5), (6),	(11)及び(12)の最小値)	49.0	47.8	47.8	47.8	45.2	40.4	34.8	29.3	23.9	19.6	17.2	15.5	12.1
<i>Su</i> (MPa)	$S_{T,MIN} \times R_T$	159	146	146	146	135	121	104	87	71	58	51	46	36
<i>Sy</i> (MPa)	$S_{yOMIN} imes R_Y$	73	71	71	71	71	71	67	61	53	44	36	28	24
Sm (MPa)	(13)を超えない整数	49	47	47	47	45	40	34	29	23	19	17	15	12
$(17)1/3.5 \times S_{T,MIN}$ (1	MPa)	45.4	-	-	-	-	-	-	-	-	-	-	-	-
$(18)1/3.5 \times S_{T,MIN} \times R_{T}$	r, <i>min</i> (MPa)	45.4	41.9	41.9	41.7	38.8	34.6	29.9	25.1	20.5	16.8	14.7	13.3	10.4
$(19)_{2/3}S_{y0,MIN}$ (MI	Pa)	49.0	-	-	-	-	-	-	-	-	-	-	-	-
$(20)2/3S_{y0,MIN} \times R_{Y,M}$	_{IN} (MPa)	49.0	47.8	47.8	47.8	47.8	47.7	44.9	40.9	35.7	30.0	24.2	19.2	16.4
$(21)S_{Rmin}$ (MPa)		-	92.4	70.8	54.1	41.2	31.3	23.7	17.8	13.4	10	7.4	-	-
$(22)F_{avg}$		-	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	-	-
$(23)F_{avg} \times S_{Rmin}$ (M	Pa)	-	61.9	47.4	36.3	27.6	21.0	15.9	11.9	9.0	6.7	5.0	-	-
$(24)1.0S_{C}$ (MPa)		-	-	-	-	40.7	31.1	23.7	18	13.6	10.3	7.7	-	-
(25)最小值((18),(19)	,(20),(23)及び(24)の最小値)	45.4	41.9	41.9	36.3	27.6	21.0	15.9	11.9	9.0	6.7	5.0	-	-
S (MPa)	(25)を超えない整数	45	41	41	36	27	21	15	11	9	6	5	-	-

表 57 MB-A3004の設計降伏点 S_y、設計引張強さ S_u、設計応力強さ S_m、許容引張応力 Sの決定

(*)低温側の値を超えない値とする。

6.4 破壊靭性の評価

(1)破壊靭性試験

表 58 と表 59 に BC-A6N01 と MB-A3004 の破壊靭性試験結果を示す。この試験方法は 試験結果により、線形破壊力学パラメータ K_{IC} または非線形破壊力学の J_{IC} が得られる試 験であるが、試験片サイズが小さいことと、両材料ともに 0.2%耐力が低い延性材料である ことから J_{IC} を測定した。得られた破壊靱性値 J_Q が J_{IC} と見なせるためには、結果がある 条件を満足する必要がある。今回得られた結果の全てはこの条件を満たさないため、一律 で J_Q と表記した。また、 J_{IC} と K_{IC} の間に成り立つ以下の式において、 J_{IC} を J_Q に置き換 えて求めた値を K_{JQ} とした。Eは縦弾性係数、v はポアソン比である。

$$K_{IC} = \sqrt{\frac{J_{IC}E}{1-v^2}}$$

比較用の参考として他のアルミニウム合金 A2014 と A7075 の文献値(*K*_{IC})を表 60 と表 61 に示す。

(2)許容欠陥寸法評価

本材料の製造方法として熱間押出を用いている。本材料の主たる欠陥は金型との摩擦等 による製造由来の傷である。そこで、一様線状の欠陥を想定し、得られた破壊靱性値を 基に、図 145 に示す式で J値を計算して許容欠陥寸法評価を行った。

図 146 と図 147 に示す通り、BC-A6N01 と MB-A3004 共に、*t*を板厚として想定欠陥 深さ 1/2*t*(板厚の半分)程度まで許容する結果となった。

また、バスケットには各種検査に合格した材料を用いるため、許容欠陥寸法を超える欠陥を含む材料を用いることはないことから、バスケット格子用材料としての供用に問題ないと判断される。

- (a) 想定欠陥:一様深さの表面き裂(線状欠陥)
- (b)荷重 :設計降伏応力程度(BC-A6N01で45MPa、MB-A3004で57MPa)の引張
 応力を想定

	材料	ト・条件	ŧ		試験片	「寸法(n	nm)		試験結	果
状態	供試材	方向	試験 温度 (℃)	幅	板厚	正味 板厚	初期 き裂長さ	最大 試験力 (kN)	$J_Q \ (\mathrm{kJ/m}^2)$	<i>K</i> JQ MPa√m
技		T-L	-40	25.4	11.8	9.47	12.6	2.91	22.6	48.9
اللا ک	Р	T-L	22	25.4	11.8	9.46	12.6	2.68	17.6	43.1
22		T-L	200	25.4	12.0	9.66	12.5	1.81	16.8	40.1
全点	Κ	T-L	22	25.4	5.7	4.52	12.1	1.42	23.7	47.1
ŧR	0	T-L	22	25.4	12.7	10.19	12.6	3.19	20.7	46.5
		T-L	-40	25.4	12.0	9.68	12.6	3.50	18.7	44.4
7	Р	T-L	22	25.4	12.0	9.51	12.7	3.31	23.3	49.6
期本		T-L	200	25.4	12.0	9.68	12.6	2.45	48.7	68.3
夜	K	T-L	22	25.4	5.5	4.49	12.3	1.62	36.4	58.3
	0	T-L	$\overline{22}$	25.4	12.7	10.19	12.5	4.15	46.8	69.9

表 58 BC-A6N01の破壊靭性試験結果

表 59 MB-A3004 の破壊靭性試験結果

	材料	↓・条作	ŧ		試験丿	十寸法(m	nm)		試験結:	果
状態	供試材	方向	試験 温度 (℃)	幅	板厚	正味 板厚	初期 き裂長さ	最大 試験力 (kN)	$J_Q \ ({ m kJ/m} \ ^2)$	<i>K</i> JQ MPa√m
技		T-L	-40	25.4	12.7	10.16	12.7	4.46	\geq 162	≧ 118
4HK	В	T-L	22	25.4	12.7	10.17	13.4	3.94	139	109
22		T-L	200	25.4	12.0	9.52	13.3	2.51	≧ 118	≧ 97.3
全	А	T-L	22	25.4	12.5	10.02	13.0	4.14	\geq 148	≧ 113
完	С	T-L	22	25.4	12.7	10.19	12.9	4.07	126	102
		T-L	-40	25.5	12.7	10.20	12.9	4.98	142	111
		T-L	-40	25.4	12.7	10.20	12.9	4.94	133	107
月村	Б	T-L	25	25.4	12.7	10.20	13.0	4.73	159	116
初期	D	T-L	25	25.5	12.7	10.20	12.8	4.89	165	118
		T-L	200	25.4	12.7	10.20	12.9	4.45	> 151	_
		T-L	200	25.5	12.7	10.20	12.8	4.00	> 152	_

表 60 アルミニウム合金 A2014 の室温における破壊靭性試験結果

形	態	調	質	LT (MPa \cdot m ^{1/2})	TL (MPa \cdot m ^{1/2})	SL (MPa \cdot m ^{1/2})
厚	板	Т	351	34	32	24
厚	板	Т	851	25	22	19

数値は KIc を示す。LT、TL 及び SL は試験方向を示す。

表 61 アルミニウム合金 A7075 の室温における破壊靭性試験結果

形態	調質	LT	(MPa・m	1/2)	TL ((MPa・m	1/2)	SL (MPa \cdot m ^{1/2})		
		min	Ave.	max	min	Ave.	max	min	Ave.	max
厚板	T 651 T 7351	27.5 —	28.6 33.0	29.7	22.0 27.5	24.2 31.9	25.3 36.3	16.5 20.9	17.6 22.0	19.8 23.1
押出材	T 6510 T 7310	28.6 34.1	30.8 36.3	35.2 37.4	20.9 24.2	24.2 26.4	28.6 30.8	19.8 —	20.9 22.0	24.2 26.4
鍛造材	Т 652 Т 7352	26.4 29.7	28.6 34.1	30.8 38.5	25.3	25.3 7.5	- 8.6	20.9	18.7 23.1	27.5

数値は KIC を示す。LT、TL 及び SL は試験方向を示す。

H1 (平面ひずみ)

	1								
a/t	n = 1	n = 2	n = 3	n = 5	n = 7	n = 10	n = 13	n = 16	n = 20
1/8	4.95	6.93	8.57	11.5	13.5	16.1	18.1	19.9	21.2
1/4	4.34	4.77	4.64	3.82	3.06	2.17	1.55	1.11	0.712
3/8	3.88	3.25	2.63	1.68	1.06	0.539	0.276	0.142	0.0595
1/2	3.40	2.30	1.69	0.928	0.514	0.213	0.0902	0.0385	0.0000
5/8	2.86	1.80	1.30	0.697	0.378	0.153	0.0625	0.0256	0.0078
3/4	2.34	1.61	1.25	0.769	0.477	0.233	0.116	0.050	0.0078
7/8	1.91	1.57	1.37	1.10	0.925	0.702	0.110	0.005	0.0215

図 145 評価式/評価モデル[8]

図 147 MB-A3004の想定欠陥深さとJ値の関係 (注) 200℃試験結果(完全焼なまし材)のJQ値が最低値のため118kJ/m²を設定

(2)動的破壊靭性試験

変位および荷重の時刻歴を図 148から図 157に示す。荷重を負荷した際の初期の傾き より荷重速度を概算した(詳細後述)。目標変位速度 500mm/s の動的破壊靭性試験では目 標に対して 10%程度低い速度であったが、他は MB-A3004、BC-A6N01 ともにほぼ目標の 変位速度となっていた。なお、動的試験(目標変位速度 500mm/s)では、試験片の固有振 動によると思われる荷重の変動が見られたが、これは動的破壊靭性試験の挙動としては一 般的に見られるものである。そのため、目標の条件での静的および動的の破壊靭性試験を 行うことができたと判断した。

荷重と変位の関係を図 158から図 161に示す。動的試験においては荷重変動が見られるものの、MB-A3004、BC-A6N01ともに荷重の平均的な変化について、動的と静的の差はほとんど見られなかった。

破断後の試験片の破面外観を図 162から図 167に、代表的な試験片に対する破面の SEM 観察結果を図 168から図 172に示す。BC-A6N01の方が MB-A3004よりディンプ ル径が小さいものの何れの破面も延性破面の様相を呈しており、負荷速度による破面様相 の違いは認められなかった。

試験の概要および分析結果を表 62 と表 63 に示す。荷重速度から以下に示す式を用いて負荷速度 *dKl dt* を算出した。

$$K_{(i)} = \frac{P_{(i)}}{(BB_N W)^{1/2}} f\left(\frac{a_i}{W}\right)$$

$$\begin{split} f\left(\frac{a_i}{W}\right) &= \\ \frac{\left\{\left(2 + \frac{a_i}{W}\right) \left[0.886 + 4.64\left(\frac{a_i}{W}\right) - 13.32\left(\frac{a_i}{W}\right)^2 + 14.72\left(\frac{a_i}{W}\right)^3 - 5.6\left(\frac{a_i}{W}\right)^4\right]\right\}}{\left(1 - \frac{a_i}{W}\right)^{3/2}} \end{split}$$

試験片の寸法は試験片の加工後の寸法記録より以下の値を用いた。

MB-A3004 : B=12.7mm, B_N=10.16mm, W=25.4mm, a=12.5mm

BC-A6N01 : *B*=5.79mm, *B_N*=4.59mm, *W*=25.4mm, *a*=12.5mm

ここで、B:板厚、BN:サイドグルーブ底の板厚、W:試験片の幅,a:き裂長さである。

図 173 に負荷速度と破壊靭性値の関係[9][10][11][12]を示す。今回の動的破壊靭性試験の試験速度はバスケット落下時の応力拡大係数の変化速度

(*dK*/*dt*=5×10³~5×10⁴MPa√m/s)の範囲内であった。したがって、バスケット落下時の負荷速度範囲におけるアルミニウム合金の動的破壊靭性の低下は顕著ではなく、破壊形態も 延性破壊であると考えられる。

(3)評価

試験後の破面は、BC・A6N01、MB・A3004のいずれも延性破面の様相を呈しており、負荷速度による破面様相の違いは認められなかった。今回の静的および動的破壊靭性試験で得られた荷重-開口変位曲線を比較した結果、ほとんど差は認められなかったことから、バスケット落下時の負荷速度範囲のアルミニウム合金の動的破壊靭性の低下は顕著では無く、破壊形態も延性破壊であると考えられる。

MB-A3004 動的(目標変位速度:10mm/s)

MB-A3004 動的(目標変位速度: 500mm/s)

BC-A6N01静的(目標変位速度:0.01mm/s)

MB-A3004 静的(目標変位速度: 0.01mm/s)

MB-A3004 動的(目標変位速度:10mm/s)

図 156 荷重の時刻歴 BC-A6N01静的(目標変位速度:0.01mm/s)

図 162 試験片の破面状況 (試験片符号:A3004-1 供試材:MB-A3004 目標変位速度:0.01mm/s)

図 163 試験片の破面状況 (試験片符号:A3004-4 供試材:MB-A3004 目標変位速度:10mm/s)

図 164 試験片の破面状況 (試験片符号:A3004-5 供試材:MB-A3004 目標変位速度: 500mm/s)

図 165 試験片の破面状況 (試験片符号:A3004-6 供試材:MB-A3004 目標変位速度: 500mm/s)

図 166 試験片の破面状況 (試験片符号:BCA6N01-2 供試材:BA1 目標変位速度:0.01mm/s)

図 167 試験片の破面状況 (試験片符号:BCA6N01-3 供試材:BAl 目標変位速度:500mm/s)

図 168 試験片 A3004-1 の破面 SEM 観察結果 (目標変位速度: 0.01mm/s)

<complex-block><figure>

図 169 試験片 A3004-4 の破面 SEM 観察結果 (目標変位速度:10mm/s)

観察位置⑤

図 170 試験片 A3004-5 の破面 SEM 観察結果 (目標変位速度: 500mm/s)

観察位置⑧

図 171 試験片 BC-A6N01-2 の破面 SEM 観察結果 (目標変位速度: 0.01mm/s)

観察位置⑨

観察位置⑩

図 172 試験片 BC-A6N01-3 の破面 SEM 観察結果 (目標変位速度: 500mm/s)

試験片 符号	変位速度 (目標) mm/s	変位速度 (実績、概算) mm/s	応力拡大係数の 変化速度 <i>dK</i> / <i>dt</i> (実績、概算) MPa√m/s	結果概要	破面
A3004-1	0.01	約0.010	約4.32×10 ⁻¹	_	延性破面
A3004-4	10	約11	約2.29×10 ²	P- Vg関係は、静的 (A3004-1)とほぼ同程度で あった。	延性破面
A3004-5	500	約460	約6.77×10³	 P-Vg関係は、静的 (A3004-1)および低荷重速 度の動的(A3004-4)とほぼ 同程度であった。 	延性破面
A3004-6	500	約460	約6.77×10 ³	 P-Vg関係は、静的 (A3004-1)および動的 (A3004-4,5)とほぼ同程度 であった。 	延性破面

表 62 MB-A3004 試験結果の概要

表 63 BC-A6N01 試験結果の概要

試験片 符号	変位速度 (目標) mm/s	変位速度 (実績、概算) mm/s	応力拡大係数の 変化速度 <i>dK</i> / <i>dt</i> (実績、概算) MPa√m/s	結果概要	破面
BC-A6N01-2	0.01	約0.0088	約4.13×10 ⁻¹	_	延性破面
BC-A6N01-3	500	約450	約4.59×104	<i>P- Vg</i> 関係は、静的 (BC-A6N01-2)とほぼ同程 度であった。	延性破面

6.5 物性值測定

(1)BC-A6N01

a.弾性定数

表 64 と表 65 に BC-A6N01 初期材、長時間時効材及び完全焼なまし材の弾性定数(縦弾 性係数、せん断弾性係数及びポアソン比)の測定結果を示す。このデータに基づき、図 174 は縦弾性係数の温度依存性、温度 T(℃)に対する縦弾性係数の変化がわずかに上に凸とな っている傾向から、二次多項式を用いた最小二乗法により、以下の温度依存性が求められ た。

縦弾性係数 $E = -1.282 \times 10^{-4} T^2 - 1.559 \times 10^{-2} T + 84.39$ (GPa)

図 175 はポアソン比の温度依存性を示す。温度に対してほぼ一定であり、平均値を採って v=0.39 とした。

b.線熱膨張係数

表 80 から表 82 に BC-A6N01 の初期材、長時間時効材及び完全焼なまし材の線熱膨張 測定結果を示す。これは表中に示された温度範囲における平均熱膨張係数である。図 184 に線熱膨張係数の温度依存性を示す。温度 T(℃)に対する線熱膨張係数 a の変化がわずか に上に凸となっている傾向から、二次多項式を用いた最小二乗法により、以下の温度依存 性が求められた。

 $a = -2.771 \times 10^{-11} T^2 + 1.828 \times 10^{-8} T + 1.885 \times 10^{-5} (1/^{\circ}C)$

c.熱物性

表 70 から表 72 に BC-A6N01 の初期材、長時間時効材及び完全焼なまし材の熱伝導率 の実験による評価結果を示す。

図 178 に BC-A6N01 の熱伝導率の実験による評価結果を測定温度に対してプロットした結果を示す。初期材と比べて、時効材と完全焼なまし材の熱伝導率は、若干高い傾向にある。温度 *T*(℃)に対する熱伝導率の変化がわずかに上に凸となっている傾向から、二次 多項式を用いた最小二乗法により、以下の温度依存性が求められた。

熱伝導率 *A*= -1.135×10⁻⁴ *T*² + 4.052×10⁻² *T* + 188.3 (W/(m・K))

図 179 に BC-A6N01 の比熱測定結果を測定温度に対してプロットした結果を示す。物 理量としての比熱は方向性を持たないと考えられるが、熱伝導率の評価に用いた試験片と 同一の試料を用いて測定を行っているため、結果は熱伝導率を測定した採取方向を継承し て示した。初期材、長時間時効材及び完全焼なまし材の間で値に有意な差異は認められな かった。比熱の温度依存性については Debye モデルが知られている。しかし、ここでは限 られた温度範囲における実用的な近似として、温度 *T*(℃)に対する比熱の変化がわずかに 上に凸となっている傾向から、二次多項式を用いた最小二乗法により、以下に示す温度依 存性が求められた。

比熱 C_p =-2.418×10⁻⁴ T^2 + 6.635×10⁻¹ T + 894.3 (J/(kg・K))

図 180に BC-A6N01の熱拡散率測定結果を測定温度に対してプロットした結果を示す。 初期材と比べ、時効材と完全焼なまし材の熱伝導率は若干高い傾向がある。温度 T(℃)に 対する熱拡散率の変化がわずかに上に凸となっている傾向から、二次多項式を用いた最小 二乗法により、以下の温度依存性が求められた。

熱拡散率 a= -1.033×10⁻¹² T² - 4.044×10⁻⁸ T + 7.846×10⁻⁸

本測定は円板試験片内の熱流束が T 方向と L 方向の両方のケースで行ったが、両者で熱拡 散率に有意な差は認められなかった。比熱には方向性は存在しない。したがって、これら から計算される熱伝導率にも有意な差はなかった。

(2)MB-A3004

a.弾性定数

表 66 から表 69 に MB-A3004 初期材、長時間時効材及び完全焼なまし材の弾性定数(縦 弾性係数、せん断弾性係数及びポアソン比)の測定結果を示す。このデータに基づき、図 176 は縦弾性係数の温度依存性、温度 T(℃)に対する縦弾性係数の変化がわずかに上に凸 となっている傾向から、二次多項式を用いた最小二乗法により、以下の温度依存性が求め られた。

縦弾性係数 $E = -6.266 \times 10^{-5} T^2 - 1.438 \times 10^{-2} T + 74.42$ (GPa)

図 177 はポアソン比の温度依存性を示す。温度に対してほぼ一定であり、平均値を採って v=0.40 とした。

b.線熱膨張係数

表 83 と表 84 に MB-A3004 の初期材、長時間時効材の線熱膨張測定結果を示す。これ は表中に示された温度範囲における平均熱膨張係数である。図 185 に MB-A3004 の初期 材、長時間時効材及び完全焼なまし材の熱伝導率の実験による評価結果を測定温度に対し てプロットした結果を示す。温度 T(℃)に対する線熱膨張係数 a の変化がわずかに上に凸 となっている傾向から、二次多項式を用いた最小二乗法により、以下の温度依存性が求め られた。

 $a = -9.324 \times 10^{-12} T^2 + 1.109 \times 10^{-8} T + 2.258 \times 10^{-5} (1/^{\circ}C)$

c.熱物性

表 73 から表 79 に MB-A3004 の初期材、長時間時効材及び完全焼なまし材の熱伝導率 の実験による評価結果を示す。

図 181 に MB-A3004 の初期材、長時間時効材及び完全焼なまし材の熱伝導率の実験に よる評価結果を測定温度に対してプロットした結果を示す。初期材と比べて、時効材と完 全焼なまし材の熱伝導率は、若干高い傾向にある。温度 *T*(℃)に対する熱伝導率の変化が わずかに上に凸となっている傾向から、二次多項式を用いた最小二乗法により、以下の温 度依存性が求められた。

熱伝導率 *A*= -1.593×10⁻⁴*T*² + 1.287×10⁻¹*T* + 157.9 (W/(m・K))

図 182 に MB-A3004 の初期材、長時間時効材及び完全焼なまし材の比熱測定結果を測 定温度に対してプロットした結果を示す。物理量としての比熱は方向性を持たないと考え られるが、熱伝導率の評価に用いた試験片と同一の試料を用いて測定を行っているため、 結果は熱伝導率を測定した採取方向を継承して示した。初期材、長時間時効材及び完全焼 なまし材の間で値に有意な差異は認められなかった。比熱の温度依存性については Debye モデルが知られている。しかし、ここでは限られた温度範囲における実用的な近似として、 温度 *T*(℃)に対する比熱の変化がわずかに上に凸となっている傾向から、二次多項式を用 いた最小二乗法により、以下に示す温度依存性が求められた。

比熱 C_p = 2.338×10⁻⁴ T^2 + 3.291×10⁻¹ T + 878.6 (J/(kg · K))

図 183 に MB-A3004 の初期材、長時間時効材及び完全焼なまし材の熱拡散率測定結果 を測定温度に対してプロットした結果を示す。初期材と比べ、時効材と完全焼なまし材の 熱伝導率は若干高い傾向がある。温度 *T*(℃)に対する熱拡散率の変化がわずかに上に凸と なっている傾向から、二次多項式を用いた最小二乗法により、以下の温度依存性が求めら れた。

熱拡散率 a= -8.449×10⁻¹¹T² + 2.930E×10⁻⁸T + 6.565×10⁻⁵ (m²/s)

本測定は円板試験片内の熱流束が T 方向と L 方向の両方のケースで行ったが、両者で熱拡 散率に有意な差は認められなかった。比熱には方向性は存在しない。したがって、これら から計算される熱伝導率にも有意な差はなかった。

時効条件	供試材 符号	方向	温度 (℃)	縦弾性 係数 (GPa)	せん断弾 性係数 (GPa)	ポアソン 比
			24	84.3	29.7	0.42
			100	82.0	28.9	0.42
		T古向	150	79.7	28.1	0.42
		山刀回	200	76.2	26.9	0.42
			250	72.2	25.0	0.42
対けまれ	N		300	68.4	23.7	0.42
171 791 171	IN		25	80.0	29.6	0.35
			100	77.7	28.8	0.35
		T 方向	150	75.6	28.1	0.35
			200	71.7	26.8	0.34
			250	67.6	25.2	0.34
			300	64.1	24.0	0.34
			24	85.7	30.4	0.41
			100	83.6	29.6	0.41
		I 古向	150	81.8	28.9	0.42
		山刀門	200	78.9	28.0	0.41
			250	75.1	26.4	0.42
300°C	N		300	71.3	24.7	0.44
×10000hr	IN		25	81.0	29.5	0.37
			100	78.2	29.5	0.32
		Τth	150	75.0	29.1	0.29
		T 万 回	200	72.2	27.7	0.30
			250	68.9	25.2	0.37
			300	64.6	24.7	0.31

表 64 BC-A6N01 初期材と長時間時効材(300℃×10000hr)の弾性定数測定結果

奉	丸加理タ	公代	ш. <u>а</u> ь					
温度 (℃)	《处理》 保持 時間 (hr)	冷却 速度 (℃/hr)	供試 材 符号	方向	温度 (℃)	縦弾性 係数 (GPa)	せん断弾 性係数 (GPa)	ポアソン 比
					25	85.8	30.3	0.42
					100	83.9	29.6	0.42
				T the	150	82.1	29.0	0.42
				L刀凹	200	78.8	27.0	0.41
					250	74.3	27.9	0.42
			0		300	70.7	24.5	0.44
			0		25	83.1	30.2	0.38
					100	81.4	29.5	0.38
				77 士山	150	79.3	28.8	0.38
			1 // ["]	200	76.0	27.7	0.37	
		0.5			250	71.3	26.0	0.37
540	10				300	67.6	24.4	0.39
040	10				25	86.6	30.5	0.42
					100	84.5	29.8	0.42
				T卡向	150	82.3	29.2	0.41
				山刀門	200	79.0	27.9	0.42
					250	75.3	26.3	0.43
			D		300	72.4	24.9	0.45
			I		25	83.9	31.0	0.35
					100	82.2	30.3	0.36
				丁 古 向	150	79.5	29.4	0.35
				Т方回	200	75.6	27.9	0.35
					250	71.5	26.3	0.36
				300	68.5	25.1	0.36	

表 65 BC-A6N01 完全焼なまし材の弾性定数測定結果

温度(℃)

BC-A6N01のポアソン比測定結果

0.1

図 175

					せん断弾	
10.45	供試材		温度	縦弾性係	ビル西北	10
状態	符号	万回	(°C)	数(GPa)	性係数	ホアソン比
				<i>»</i> (())	(GPa)	
			25	72.7	26.3	0.38
			100	70.3	25.5	0.38
		I古向	150	68.6	24.9	0.38
		口刀问	200	66.9	24.3	0.38
			250	64.7	23.5	0.38
	^		300	61.9	22.5	0.38
	A		25	74.1	26.1	0.42
			100	71.8	25.3	0.42
		丁 古向	150	70.2	24.8	0.42
		1 /J [H]	200	68.4	24.1	0.42
			250	66.1	23.4	0.41
			300	63.1	22.4	0.41
	В	L 方向	25	73.9	27.3	0.35
			100	72.1	26.7	0.35
			150	70.7	26.1	0.35
			200	69.2	25.5	0.36
			250	67.3	24.9	0.35
され 甘田 おお			300	65.0	23.9	0.36
们和内			25	75.3	26.7	0.41
			100	73.6	26.1	0.41
		五 七 向	150	72.1	25.6	0.41
		1 刀 回	200	70.6	25.0	0.41
			250	68.7	24.3	0.41
			300	66.1	23.3	0.42
			25	74.5	26.5	0.41
			100	73.0	25.9	0.41
		T卡向	150	71.6	25.4	0.41
		口刀间	200	70.1	24.8	0.41
			250	68.4	24.1	0.42
	С		300	65.8	23.1	0.42
	U		25	74.0	27.4	0.35
			100	72.3	26.9	0.34
		五 七 白	150	71.0	26.4	0.34
		工刀凹	200	69.4	25.9	0.34
			250	67.6	25.3	0.34
			300	65.2	24.2	0.35

表 66 MB-A3004 初期材の弾性定数測定結果

※ポアソン比は弾性等方体として算出。

状態	供試材 符号	方向	温度 (℃)	縦弾性係 数(GPa)	せん断弾 性係数 (GPa)	ポアソン比
			25	74.2	26.3	0.41
			100	72.4	25.6	0.41
		T	150	71.0	25.0	0.42
		L力回	200	69.4	24.5	0.42
			250	67.4	23.8	0.42
	٨		300	64.9	22.7	0.43
	А		25	74.9	26.5	0.41
			100	72.8	25.8	0.41
		小 士 向	150	71.3	25.2	0.41
		1 万 回	200	69.7	24.7	0.41
			250	67.8	23.9	0.42
			300	64.8	22.8	0.42
	В		25	73.6	26.4	0.39
		L 方向	100	71.5	25.6	0.40
			150	70.0	25.1	0.39
			200	68.5	24.5	0.40
			250	66.6	23.9	0.39
$250^\circ\!\mathrm{C}$			300	63.4	22.8	0.39
$\times 5000 hr$			25	74.6	26.4	0.41
			100	72.8	25.7	0.42
		T古向	150	71.4	25.2	0.42
			200	69.9	24.7	0.41
			250	68.3	24.1	0.42
			300	65.0	23.0	0.41
			25	74.1	26.4	0.40
			100	72.1	25.6	0.41
		L方向	150	70.6	25.1	0.41
		1)) [⊢]	200	69.2	24.5	0.41
			250	67.3	23.8	0.41
	C		300	64.6	22.8	0.42
	U		25	74.6	26.3	0.42
			100	72.6	25.5	0.42
		T方向	150	71.2	25.0	0.42
		1 / 月 円	200	69.6	24.4	0.43
			250	67.8	23.7	0.43
			300	64.8	22.7	0.43

表 67 MB-A3004長時間時効材(250℃×5000hr)の弾性定数測定結果

※ポアソン比は弾性等方体として算出。

				縦弾性	せん断弾	
	供試材		温度			20
時匆余忤	符号	方回	(°C)	係数	性係数	ホアソン比
				(GPa)	(GPa)	
			25	74.1	26.4	0.40
			100	72.0	25.6	0.41
		L 方向	150	70.3	25.1	0.40
			200	68.7	24.5	0.40
			250	66.8	23.7	0.41
	٨		300	64.1	22.8	0.41
	А		25	74.1	23.0	0.41
			100	72.1	25.6	0.41
		77 七白	150	70.7	25.0	0.41
		1 万回	200	69.2	24.5	0.41
			250	67.3	23.8	0.41
			300	64.5	22.8	0.41
		I古向	25	74.1	26.4	0.41
			100	72.5	25.8	0.41
			150	71.3	25.2	0.41
		L刀門	200	69.9	24.7	0.41
	В		250	68.4	24.1	0.42
$300^\circ C$			300	65.5	23.1	0.42
$\times 5000 hr$			25	74.5	26.3	0.42
			100	72.6	25.5	0.42
		77 卡山	150	71.1	25.0	0.42
		1 万回	200	69.5	24.5	0.42
			250	67.9	23.8	0.43
			300	64.9	22.8	0.42
			25	74.0	26.3	0.41
			100	71.9	25.5	0.41
		T卡向	150	70.6	25.0	0.41
		山刀回	200	68.9	24.5	0.41
			250	67.3	23.8	0.41
	C		300	64.7	22.8	0.42
	U		25	74.8	26.5	0.41
			100	72.7	25.8	0.41
		T 卡向	150	71.2	25.3	0.41
		T 万回	200	69.6	24.7	0.41
			250	67.9	24.1	0.41
			300	64.8	23.0	0.41

表 68 MB-A3004長時間時効材(300℃×5000hr)の弾性定数測定結果

※ポアソン比は弾性等方体として算出。

衣 05		MD A3004 九主虎なよじ初						
	時効条	件	供試		润 庄	縦弾性	せん断弾	
泪由	保持	冷却	材	方向	<u> 偏</u> 度	係数	性係数	ポアソン比
(℃)	時間	速度	符号		(°C)	(GPa)	(GPa)	
(0)	(hr)	(°C/hr)	13 0				(012 0)	
					25	73.3	26.4	0.39
					100	71.5	25.7	0.39
				L方向	150	69.9	25.1	0.39
					200	68.3	24.5	0.39
					250	66.3	23.8	0.39
			Δ		300	63.2	22.7	0.39
			Π		25	74.3	26.1	0.42
				100	72.4	25.4	0.43	
			T 古向	150	70.8	24.9	0.42	
				1 // [=]	200	69.2	24.3	0.42
				250	66.9	23.6	0.42	
					300	63.5	22.5	0.41
					25	73.2	26.4	0.39
			L方向	100	71.2	25.7	0.39	
				150	69.7	25.1	0.39	
				200	68	24.5	0.39	
		0.3	В		250	65.9	23.8	0.38
520	10				300	62.6	22.6	0.38
520	10			五 七 向	25	74.6	26.3	0.42
					100	72.8	25.7	0.42
					150	71.1	25.1	0.42
				1 // [~]	200	69.4	24.5	0.42
					250	67.3	23.8	0.41
					300	63.4	22.6	0.4
					25	73	27.2	0.34
					100	71.1	26.5	0.34
				I 古向	150	69.5	25.9	0.34
				口刀间	200	67.8	25.3	0.34
					250	65.7	24.6	0.34
			C		300	62.6	23.4	0.34
			U		25	74.5	26.5	0.41
					100	72.8	25.7	0.42
				Τμ	150	71.3	25.1	0.42
				工刀門	200	69.6	24.5	0.42
					250	67.4	23.9	0.41
					300	64.1	22.8	0.41

表 69 MB-A3004 完全焼なまし材の弾性定数測定結果

図 177 MB-A3004 のポアソン比測定結果

時効 処理	供試材 符号	採取方 向	温度 (℃)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
			25	9.10×10^{2}	8.03×10^{-5}	196
			102	9.41×10^{2}	8.05×10^{-5}	203
		Tth	158	9.73×10^{2}	7.57×10^{-5}	197
		山刀門	200	1.00×10^{3}	7.32×10^{-5}	196
			250	1.04×10^{3}	7.18×10^{-5}	200
加曲林	N		300	1.06×10^{3}	6.98×10^{-5}	198
1/1 7/1 1/1	IN		23	9.09×10^{2}	7.85×10^{-5}	191
			103	9.32×10^{2}	7.89×10^{-5}	196
		五 七百	157	9.62×10^{2}	7.38×10^{-5}	190
		Τク미	200	9.84×10^{2}	7.16×10^{-5}	188
			250	1.01×10^{3}	6.94×10^{-5}	187
			300	1.05×10^{3}	6.74×10^{-5}	189
			25	9.10×10^{2}	7.60×10^{-5}	185
			101	9.31×10^{2}	7.46×10^{-5}	185
		I卡向	152	9.62×10^{2}	7.10×10^{-5}	182
		山刀門	200	1.00×10^{3}	6.92×10^{-5}	185
			250	1.01×10^{3}	6.84×10^{-5}	185
300°C	N		300	1.05×10^{3}	6.61×10^{-5}	185
×10000hr	IN		25	9.16×10^{2}	7.43×10^{-5}	182
			101	$9.65{ imes}10^2$	7.33×10^{-5}	189
		丁 卡 向	152	9.74×10^{2}	6.96×10^{-5}	181
		T 万 回	200	9.95×10^{2}	6.81×10^{-5}	181
			250	1.02×10^{3}	6.70×10^{-5}	184
			300	1.06×10^{3}	6.51×10^{-5}	184

表 70 BC-A6N01 初期材と長時間時効材(300℃×5000hr)の熱物性測定結果

状態	供試材 符号	方向	温度 (℃)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
			25	9.10×10^{2}	7.60×10^{-5}	185
			101	9.31×10^{2}	7.46×10^{-5}	185
		I 卡向	152	9.62×10^{2}	7.10×10^{-5}	182
	Ν	L 力 回	200	1.00×10^{3}	6.92×10^{-5}	185
			250	1.01×10^{3}	6.84×10^{-5}	185
300°C			300	1.05×10^{3}	6.61×10^{-5}	185
×10000hr			25	9.16×10^{2}	7.43×10^{-5}	182
			101	$9.65 imes 10^2$	7.33×10^{-5}	189
		丁 古 向	152	9.74×10^{2}	6.96×10^{-5}	181
		了力问	200	$9.95{ imes}10^2$	6.81×10^{-5}	181
			250	1.02×10^{2}	6.70×10^{-5}	184
			300	1.06×10^{2}	6.51×10^{-5}	184

表 71 BC-A6N01長時間時効材(300℃×10000hr)の熱物性測定結果

素	熟処理彡	条件						
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃/hr)	供試材	採取 方向	温度 (℃)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
					20	8.90×10^{2}	7.86×10^{-5}	187
					100	9.46×10^{2}	7.63×10^{-5}	194
				T + h	150	9.77×10^{2}	7.40×10^{-5}	194
				L刀囘	200	1.01×10^{2}	7.20×10^{-5}	194
				250	1.04×10^{2}	6.98×10^{-5}	194	
			0		300	1.07×10^{2}	6.79×10^{-5}	194
		0		20	9.11×10^{2}	8.13×10 ⁻⁵	197	
		0.5			100	9.73×10^{2}	7.97×10^{-5}	207
				T 方向	150	1.01×10^{3}	7.73×10 ⁻⁵	208
					200	1.04×10^{3}	7.46×10^{-5}	207
					250	1.07×10^{3}	7.26×10^{-5}	207
F 40	10				300	1.10×10^{3}	7.04×10^{-5}	207
540	10	0.5			20	9.06×10^{2}	7.50×10^{-5}	183
					100	9.64×10^{2}	7.47×10^{-5}	194
				T古向	150	9.93×10^{2}	7.25×10^{-5}	194
				山刀间	200	1.02×10^{2}	7.06×10^{-5}	195
					250	1.06×10^{3}	6.86×10^{-5}	195
			р		300	1.08×10^{3}	6.69×10^{-5}	195
			P		20	9.27×10^{2}	7.87×10^{-5}	197
					100	9.82×10^{2}	7.82×10^{-5}	207
				77 士山	150	1.01×10^{3}	7.54×10^{-5}	206
				T万回	200	1.04×10^{3}	7.32×10^{-5}	206
				250	1.07×10^{3}	7.11×10 ⁻⁵	205	
					300	1.09×10^{3}	6.90×10^{-5}	203

表 72 BC-A6N01 完全焼なまし材の熱物性測定結果

図 178 BC-A6N01の初期材、長時間時効材及び完全焼なまし材の熱伝導率の実験による評価結果

図 179 BC-A6N01の初期材、長時間時効材及び完全焼なまし材の比熱測定結果

図 180 BC-A6N01 の初期材、長時間時効材及び完全焼なまし材の熱拡散率測定結果

状態	供試材 符号	方向	温度 (℃)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
			22	900	6.11×10 ⁻⁵	150
			95	903	6.41×10^{-5}	158
		т	145	941	6.54×10^{-5}	167
		L力回	200	984	6.49×10^{-5}	174
			250	996	6.50×10^{-5}	176
			300	1040	6.49×10^{-5}	183
	А		21	892	6.11×10^{-5}	148
			96	912	6.36×10^{-5}	158
		77 七古	148	938	6.47×10^{-5}	165
		1 万回	200	943	6.43×10^{-5}	165
			250	985	6.45×10^{-5}	173
			300	1000	6.40×10^{-5}	175
	В		25	906	6.17×10^{-5}	152
		L 方向	99	920	6.34×10^{-5}	158
			151	917	6.46×10^{-5}	161
			200	944	6.48×10^{-5}	166
			250	969	6.47×10^{-5}	170
			300	1010	6.51×10^{-5}	178
初初初		n + 4	25	908	6.01×10^{-5}	148
			99	892	6.44×10^{-5}	156
			151	922	6.46×10^{-5}	162
			200	945	$6.50 imes 10^{-5}$	167
			250	973	6.47×10^{-5}	171
			300	1010	6.48×10^{-5}	178
			26	894	6.04×10^{-5}	147
			100	899	6.34×10^{-5}	155
		I古向	151	924	6.46×10^{-5}	162
		L // [+]	200	943	6.45×10^{-5}	165
			250	982	6.45×10^{-5}	172
	С		300	993	6.39×10^{-5}	173
			26	892	6.04×10^{-5}	148
			101	878	6.50×10^{-5}	155
		T方向	152	904	6.38×10^{-5}	157
			200	923	6.40×10^{-5}	160
			250	936	6.44×10^{-5}	164
			300	975	6.40×10^{-5}	170

表 73 MB-A3004 初期材の熱物性測定結果

時効 処理	供試材 符号	採取方 向	温度 (℃)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
			23	875	6.52×10^{-5}	155
			97	905	6.76×10^{-5}	166
		T	151	934	6.82×10^{-5}	173
		L力问	200	951	6.80×10^{-5}	176
			250	970	6.80×10^{-5}	179
			300	1000	$6.74 imes 10^{-5}$	184
	А		23	851	6.30×10^{-5}	146
			97	883	6.53×10^{-5}	157
		小 七百	150	907	$6.59 imes 10^{-5}$	163
		1 万円	200	921	6.60×10^{-5}	165
			250	937	$6.59 imes 10^{-5}$	168
			300	965	$6.47 imes 10^{-5}$	170
			23	875	$6.52 imes 10^{-5}$	155
		L 方向	97	905	$6.76 imes 10^{-5}$	166
			151	934	$6.82 imes 10^{-5}$	173
			200	951	6.80×10^{-5}	176
0 5 0°C			250	970	6.80×10^{-5}	179
200 C	р		300	1000	$6.74 imes 10^{-5}$	184
×5000n	B	T 方向	23	856	6.14×10^{-5}	143
r			97	893	$6.42 imes 10^{-5}$	156
			148	912	$6.45 imes 10^{-5}$	160
			200	918	6.43×10^{-5}	161
			249	930	6.42×10^{-5}	162
			300	961	$6.38 imes 10^{-5}$	167
			22	899	6.41×10^{-5}	157
			98	924	6.60×10^{-5}	166
		L方向	153	937	6.63×10^{-5}	169
			200	959	$6.65 imes 10^{-5}$	173
			250	978	$6.65 imes 10^{-5}$	177
	C		300	988	$6.59 imes 10^{-5}$	177
	U		22	880	6.41×10^{-5}	144
			97	919	$6.60 imes 10^{-5}$	159
		Ττά	151	951	6.63×10^{-5}	166
		工刀門	200	966	$6.65 imes 10^{-5}$	169
			250	996	6.65×10^{-5}	174
			300	1020	6.59×10^{-5}	176

表 74 MB-A3004 長時間時効材(250℃×5000hr)の熱物性測定結果

時効	供試材	採取方	温度	比熱	熱拡散率	熱伝導率
処理	符号	向	(°C)	$(J/(kg \cdot K))$	(m^2/s)	$(W/(m \cdot K))$
			23	875	7.05×10^{-5}	168
			98	912	7.17×10^{-5}	178
		T + E	151	927	7.12×10^{-5}	180
		L刀円	200	943	7.09×10^{-5}	182
			250	958	7.02×10^{-5}	184
	٨		300	963	$6.94 imes 10^{-5}$	182
	A		23	891	$6.73 imes 10^{-5}$	164
			98	915	6.83×10^{-5}	171
		丁 古向	152	938	$6.79 imes 10^{-5}$	174
		1 // [4]	200	961	$6.77 imes 10^{-5}$	178
			250	977	$6.70 imes 10^{-5}$	179
			300	979	6.64×10^{-5}	178
			23	888	7.06×10^{-5}	171
		L 方向 B T 方向	97	918	7.07×10^{-5}	177
			148	939	7.06×10^{-5}	180
			200	970	7.03×10^{-5}	186
200%			250	996	6.99×10^{-5}	189
300 C	в		300	1010	6.90×10^{-5}	190
r			23	856	6.14×10^{-5}	158
1			97	893	6.42×10^{-5}	171
			148	912	6.45×10^{-5}	172
			200	918	6.43×10^{-5}	176
			249	930	6.42×10^{-5}	178
			300	961	6.38×10^{-5}	178
			23	891	$6.52 imes 10^{-5}$	171
			98	925	$6.79 imes 10^{-5}$	171
		L 方向	152	932	$6.79 imes 10^{-5}$	172
			200	959	6.73×10^{-5}	176
			250	976	6.72×10^{-5}	178
	С		300	989	6.61×10^{-5}	178
			23	901	6.95×10^{-5}	170
			98	924	7.14×10^{-5}	179
		T 方向	151	953	7.05×10^{-5}	183
		± >> 1:0	200	972	7.03×10^{-5}	186
			250	1000	6.95×10^{-5}	189
			300	1020	6.91×10^{-5}	191

表 75 MB-A3004長時間時効材(300℃×5000hr)の熱物性測定結果

状態	供試材 符号	方向	温度 (℃)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
		L 方向	22	900	6.11×10^{-5}	150
			95	903	6.41×10^{-5}	158
			145	941	6.54×10^{-5}	167
			200	984	6.49×10^{-5}	174
			250	996	6.50×10^{-5}	176
	٨		300	1040	6.49×10^{-5}	183
	А		21	892	6.11×10^{-5}	148
			96	912	6.36×10^{-5}	158
		小 七 点	148	938	6.47×10^{-5}	165
		1 万円	200	943	6.43×10^{-5}	165
			250	985	6.45×10^{-5}	173
			300	1000	6.40×10^{-5}	175
			25	906	6.17×10^{-5}	152
****			99	920	6.34×10^{-5}	158
	В	L 方向	151	917	6.46×10^{-5}	161
			200	944	6.48×10^{-5}	166
			250	969	6.47×10^{-5}	170
			300	1010	6.51×10^{-5}	178
们和你		T 方向	25	908	6.01×10^{-5}	148
			99	892	6.44×10^{-5}	156
			151	922	6.46×10^{-5}	162
			200	945	$6.50 imes 10^{-5}$	167
			250	973	6.47×10^{-5}	171
			300	1010	6.48×10^{-5}	178
			26	894	6.04×10^{-5}	147
			100	899	6.34×10^{-5}	155
		L方向	151	924	6.46×10^{-5}	162
		1 ∫∫ [⊢]	200	943	6.45×10^{-5}	165
			250	982	6.45×10^{-5}	172
	С		300	993	6.39×10^{-5}	173
	U		26	892	6.04×10^{-5}	148
			101	878	6.50×10^{-5}	155
		T方向	152	904	6.38×10^{-5}	157
			200	923	6.40×10^{-5}	160
			250	936	6.44×10^{-5}	164
			300	975	6.40×10^{-5}	170

表 76 MB-A3004 初期材の熱物性測定結果

時効 処理	供試材 符号	採取方 向	温度 (℃)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
			23	875	6.52×10^{-5}	155
			97	905	6.76×10^{-5}	166
		т+-	151	934	6.82×10^{-5}	173
		山刀间	200	951	6.80×10^{-5}	176
			250	970	6.80×10^{-5}	179
			300	1000	$6.74 imes 10^{-5}$	184
	А		23	851	6.30×10^{-5}	146
			97	883	$6.53 imes 10^{-5}$	157
		五 七 山	150	907	$6.59 imes 10^{-5}$	163
		IЛ門	200	921	6.60×10^{-5}	165
			250	937	$6.59 imes 10^{-5}$	168
			300	965	6.47×10^{-5}	170
			23	875	$6.52 imes 10^{-5}$	155
250°C ×5000h B r		L方向	97	905	6.76×10^{-5}	166
	В		151	934	6.82×10^{-5}	173
			200	951	6.80×10^{-5}	176
			250	970	6.80×10^{-5}	179
			300	1000	$6.74 imes 10^{-5}$	184
		T 方向	23	856	6.14×10^{-5}	143
			97	893	6.42×10^{-5}	156
			148	912	$6.45 imes 10^{-5}$	160
			200	918	6.43×10^{-5}	161
			249	930	6.42×10^{-5}	162
			300	961	$6.38 imes 10^{-5}$	167
		I古向	22	899	6.41×10^{-5}	157
			98	924	6.60×10^{-5}	166
			153	937	6.63×10^{-5}	169
		山川町	200	959	$6.65 imes 10^{-5}$	173
			250	978	$6.65 imes 10^{-5}$	177
	C		300	988	$6.59 imes 10^{-5}$	177
	U		22	880	6.41×10^{-5}	144
			97	919	6.60×10^{-5}	159
		丁 古 向	151	951	6.63×10^{-5}	166
			200	966	6.65×10^{-5}	169
			250	996	6.65×10^{-5}	174
			300	1020	6.59×10^{-5}	176

表 77 MB-A3004 長時間時効材(250℃×5000hr)の熱物性測定結果

時効 処理	供試材 符号	採取方 向	温度 (°C)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率 (W/(m・K))
			23	875	7.05×10^{-5}	168
			98	912	7.17×10^{-5}	178
		T + E	151	927	7.12×10^{-5}	180
		L力回	200	943	7.09×10^{-5}	182
			250	958	7.02×10^{-5}	184
	Δ		300	963	6.94×10^{-5}	182
	А		23	891	6.73×10^{-5}	164
			98	915	6.83×10^{-5}	171
		中士占	152	938	$6.79 imes 10^{-5}$	174
		1 万回	200	961	6.77×10^{-5}	178
			250	977	6.70×10^{-5}	179
			300	979	6.64×10^{-5}	178
			23	888	7.06×10^{-5}	171
			97	918	7.07×10^{-5}	177
		L 方向	148	939	7.06×10^{-5}	180
	В		200	970	7.03×10^{-5}	186
300°C			250	996	$6.99 imes 10^{-5}$	189
			300	1010	$6.90 imes 10^{-5}$	190
~5000fi		T 方向	23	856	6.14×10^{-5}	158
1			97	893	6.42×10^{-5}	171
			148	912	6.45×10^{-5}	172
			200	918	6.43×10^{-5}	176
			249	930	6.42×10^{-5}	178
			300	961	6.38×10^{-5}	178
			23	891	6.52×10^{-5}	171
			98	925	$6.79 imes 10^{-5}$	171
		L方向	152	932	$6.79 imes 10^{-5}$	172
			200	959	6.73×10^{-5}	176
			250	976	6.72×10^{-5}	178
	С		300	989	6.61×10^{-5}	178
			23	901	$6.95 imes 10^{-5}$	170
			98	924	7.14×10^{-5}	179
		T 方向	151	953	7.05×10^{-5}	183
		⊥ /J [¹]	200	972	7.03×10^{-5}	186
			250	1000	$6.95 imes 10^{-5}$	189
			300	1020	6.91×10^{-5}	191

表 78 MB-A3004 長時間時効材(300°C×5000hr)の熱物性測定結果

素	熟処理彡	条件						ᆂ
温度 (°C)	保持 時間 (hr)	冷却 速度 (°C/hr)	供試 材	採取 方向	温度 (°C)	比熱 (J/(kg・K))	熱拡散率 (m²/s)	熱伝導率(W/(m・K))
					20	936	7.18×10^{-5}	183
					100	973	7.24×10^{-5}	192
				T	150	987	7.20×10^{-5}	194
				L万回	200	1010	7.16×10^{-5}	196
					250	1020	7.07×10^{-5}	197
					300	1040	6.92×10^{-5}	197
			А		20	926	7.48×10^{-5}	189
					100	962	7.55×10^{-5}	198
				m + h	150	980	7.54×10^{-5}	202
				1 万 回	200	996	7.44×10^{-5}	202
					250	1010	7.35×10^{-5}	203
					300	1030	7.22×10^{-5}	203
				-	20	870	7.21×10^{-5}	171
					100	911	$7.16 imes 10^{-5}$	178
520 10	0.3	В	L方向 -	150	933	$7.29 imes 10^{-5}$	186	
				200	956	7.21×10^{-5}	188	
				250	978	7.13×10^{-5}	190	
				300	1000	7.03×10^{-5}	192	
			T方向	20	847	$7.26 imes 10^{-5}$	168	
				100	880	$7.56 imes 10^{-5}$	182	
				150	908	7.47×10^{-5}	185	
				200	937	$7.40 imes 10^{-5}$	189	
					250	966	7.31×10^{-5}	193
					300	987	7.19×10^{-5}	194
					20	876	7.09×10^{-5}	169
					100	918	7.09×10^{-5}	177
				L方向	150	943	7.06×10^{-5}	181
					200	964	7.00×10^{-5}	184
					250	988	6.90×10^{-5}	186
			С		300	1010	6.80×10^{-5}	187
					20	891	7.15×10^{-5}	174
					100	927	7.20×10^{-5}	182
				T方向	150	947	7.16×10^{-5}	185
					200	964	7.07×10^{-5}	186
					250	984	7.02×10^{-5}	188
				300	1010	6.92×10^{-5}	190	

- 衣 79 MB-A3004 元 主焼なまし 材 の 熱物 性側 正 結 オ	表 79	MB-A3004 完全焼なまし材の熱物性測定結	果
---	------	-------------------------	---

図 181 MB-A3004の初期材、長時間時効材及び完全焼なまし材の熱伝導率の実験による評価結果

図 182 MB-A3004の初期材、長時間時効材及び完全焼なまし材の比熱測定結果

図 183 MB-A3004の初期材、長時間時効材及び完全焼なまし材の熱拡散率測定結果

状態	供試材 符号	方向	温度 (°C)	線膨張係数 (1/K)
		L 方向	30-50	1.87×10^{-5}
			30-100	1.99×10^{-5}
			30-150	2.02×10^{-5}
			30-200	2.04×10^{-5}
			30-250	2.00×10^{-5}
	N		30-300	2.00×10^{-5}
	IN		30-50	1.88×10^{-5}
			30-100	2.01×10^{-5}
		小 卡向	30-150	$2.09 imes 10^{-5}$
			30-200	$2.15 imes 10^{-5}$
			30-250	$2.22{ imes}10^{-5}$
			30-300	$2.28 imes 10^{-5}$
	Ο	L 方向	30-100	2.07×10^{-5}
			30-150	$2.08 imes 10^{-5}$
			30-200	2.09×10^{-5}
対けまた			30-250	2.04×10^{-5}
101 791 101			30-300	2.04×10^{-5}
		T方向	30-100	2.17×10^{-5}
			30-150	2.23×10^{-5}
			30-200	2.28×10^{-5}
			30-250	2.34×10^{-5}
			30-300	2.40×10^{-5}
			30-100	2.02×10^{-5}
			30-150	2.05×10^{-5}
		L方向	30-200	2.03×10^{-5}
			30-250	1.97×10^{-5}
	D		30-300	1.95×10^{-5}
	L		30-100	2.15×10^{-5}
			30-150	2.21×10^{-5}
		T方向	30-200	2.27×10^{-5}
			30-250	2.33×10^{-5}
			30-300	$2.39 imes 10^{-5}$

表 80 BC-A6N01 初期材の線熱膨張係数測定結果
状態	供試材 符号	方向	温度 (°C)	線膨張係数 (1/K)	
			30-50	1.94×10^{-5}	
			30-100	2.03×10^{-5}	
		I古向	温度線膨張係数(°C)(1/K)30-501.94×10 ⁻⁵ 30-1002.03×10 ⁻⁵ 30-1502.07×10 ⁻⁵ 30-2002.10×10 ⁻⁵ 30-2502.12×10 ⁻⁵ 30-3002.15×10 ⁻⁵ 30-502.02×10 ⁻⁵ 30-1002.11×10 ⁻⁵ 30-1502.16×10 ⁻⁵ 30-2002.20×10 ⁻⁵ 30-2002.20×10 ⁻⁵		
		山刀門	30-200	2.10×10^{-5}	
			30-250	2.12×10^{-5}	
300°C	N		30-300	2.15×10^{-5}	
×10000hr	IN		30-50	2.02×10^{-5}	
			30-100	2.11×10^{-5}	
		Tth	30-150	2.16×10^{-5}	
		1 万円	30-200	$2.20 imes 10^{-5}$	
			30-250	2.25×10^{-5}	
			30-300	2.30×10^{-5}	

表 81 BC-A6N01 長時間時効材(300°C×10000hr)の線熱膨張係数測定結果

秦	热処理条	5件							
温度 (°C)	保持 時間 (hr)	冷却 速度 (℃/hr)	供試材 符号	方向	温度 (°C)	線膨張係数 (1/K)			
					30-100	2.02×10^{-5}			
					30-150	$2.07 imes 10^{-5}$			
				L 方向	30-200	2.10×10^{-5}			
					30 - 250	2.13×10^{-5}			
			0		30-300	$2.16{ imes}10^{-5}$			
			0		30-100	2.09×10^{-5}			
					30-150	$2.15 imes 10^{-5}$			
				T 方向	30-200	$2.20 imes 10^{-5}$			
									30-250
540	10	0.5			30-300	$2.29 imes 10^{-5}$			
540	10	0.5			30-100	1.87×10^{-5}			
					30-150	1.94×10^{-5}			
				L 方向	30-200	1.98×10^{-5}			
					30-250	$2.03 imes 10^{-5}$			
			р		30-300	$2.07 imes 10^{-5}$			
			Г		30-100	$2.08 imes 10^{-5}$			
					30-150	2.13×10^{-5}			
				T 方向	30-200	2.18×10^{-5}			
					30-250	2.23×10^{-5}			

表 82 BC-A6N01 完全焼なまし材の線熱膨張係数測定結果

30-300

 2.27×10^{-5}

図 184 BC-A6N01 の初期材、長時間時効材及び完全焼なまし材の線膨張係数測定結果

叶之友 /山	供試材	温度範囲	線膨張係	系数(1/K)
时効余件	符号	(°C)	L方向	T方向
		30-50	2.28×10^{-5}	
		30-100	2.36×10^{-5}	
		30-150	2.41×10^{-5}	
	А	30-200	2.47×10^{-5}	
		30-250	2.50×10^{-5}	
		30-300	2.53×10^{-5}	
		30-50	2.30×10^{-5}	
		30-100	2.36×10^{-5}	
721	ъ	30-150	2.41×10^{-5}	
12 U	В	30-200	2.48×10^{-5}	
		30-250	2.52×10^{-5}	
		30-300	2.54×10^{-5}	
		30-50	2.28×10^{-5}	
		30-100	2.37×10^{-5}	
	G	30-150	2.42×10^{-5}	
	C	30-200	2.48×10^{-5}	
		30-250	2.52×10^{-5}	
		30-300	2.54×10^{-5}	
		30-50	2.29×10^{-5}	2.31×10 ⁻⁵
		30-100	2.36×10^{-5}	2.35×10^{-5}
		30-150	$2.40 imes 10^{-5}$	2.39×10^{-5}
	A	30-200	2.43×10^{-5}	2.43×10^{-5}
		30-250	$2.47{ imes}10^{-5}$	2.46×10^{-5}
		30-300	$2.52 imes 10^{-5}$	2.50×10^{-5}
		30-50	2.33×10^{-5}	2.32×10^{-5}
		30-100	2.38×10^{-5}	2.40×10^{-5}
$250^{\circ}\mathrm{C}$	Б	30-150	2.42×10^{-5}	2.44×10^{-5}
$\times 5000 hr$	D	30-200	$2.45 imes 10^{-5}$	2.48×10^{-5}
		30-250	$2.48 imes 10^{-5}$	2.51×10^{-5}
		30-300	$2.52 imes 10^{-5}$	2.55×10^{-5}
		30-50	2.32×10^{-5}	2.32×10^{-5}
		30-100	2.39×10^{-5}	2.39×10^{-5}
	C	30-150	2.43×10^{-5}	2.43×10^{-5}
	U	30-200	2.46×10^{-5}	2.46×10^{-5}
		30-250	2.49×10^{-5}	2.50×10^{-5}
		30-300	2.53×10^{-5}	2.54×10^{-5}

表 83 MB-A3004の初期材、長時間時効材の線熱膨張係数測定結果

時动冬仇	供試材	温度範囲	線膨張係	、数(1/K)		
时刻木口	符号	(°C)	L方向	T 方向		
		30-50	2.31×10^{-5}	$2.29 imes 10^{-5}$		
		30-100	$2.38 imes 10^{-5}$	$2.39 imes 10^{-5}$		
	٨	30-150	2.41×10^{-5}	2.43×10^{-5}		
	A	30-200	2.44×10^{-5}	2.46×10^{-5}		
		30-250	2.46×10^{-5}	2.49×10^{-5}		
		30-300	2.49×10^{-5}	2.52×10^{-5}		
		30-50	2.30×10^{-5}	2.32×10^{-5}		
	В	30-100	2.37×10^{-5}	2.38×10^{-5}		
300°C		30-150	2.41×10^{-5}	2.41×10^{-5}		
$\times 5000 hr$		30-200	2.44×10^{-5}	2.45×10^{-5}		
		30-250	2.47×10^{-5}	2.48×10^{-5}		
		30-300	2.51×10^{-5}	2.52×10^{-5}		
		30-50	2.30×10^{-5}	2.35×10^{-5}		
		30-100	2.37×10^{-5}	2.39×10^{-5}		
	C	30-150	2.41×10^{-5}	2.43×10^{-5}		
		30-200	2.44×10^{-5}	2.46×10^{-5}		
		30-250	2.47×10^{-5}	2.48×10^{-5}		
		30-300	2.51×10^{-5}	2.52×10^{-5}		

奉	丸如理冬紅	ŧ			線膨張係	《数(1/K)										
温度 (°C)	《《大子》 保持 時間 (hr)	' 冷却 速度 (°C/hr)	供試材 符号	温度範囲 (℃)	L 方向	T 方向										
				30-100	$2.33 imes 10^{-5}$	2.33×10^{-5}										
				30-150	2.37×10^{-5}	2.37×10^{-5}										
			А	30-200	2.40×10^{-5}	2.41×10^{-5}										
				30-250	2.43×10^{-5}	2.43×10^{-5}										
				30-300	$2.46 imes 10^{-5}$	$2.47 imes 10^{-5}$										
				30-100	2.32×10^{-5}	2.34×10^{-5}										
				30-150	$2.36 imes 10^{-5}$	2.38×10^{-5}										
520	10	0.3	В	30-200	2.39×10^{-5}	2.42×10^{-5}										
														30-250	2.42×10^{-5}	2.45×10^{-5}
						30-300	$2.46 imes 10^{-5}$	2.49×10^{-5}								
				30-100	$2.35 imes 10^{-5}$	2.32×10^{-5}										
				30-150	2.39×10^{-5}	2.37×10^{-5}										
			С	30-200	2.43×10^{-5}	2.41×10^{-5}										
				30-250	2.46×10^{-5}	2.44×10^{-5}										
				30-300	2.50×10^{-5}	2.48×10^{-5}										

表 84 MB-A3004の完全焼なまし材の線熱膨張係数測定結果

図 185 MB-A3004 の初期材、長時間時効材及び完全焼なまし材の線膨張係数測定結果

7.まとめ

本確性試験では、金属製乾式キャスクバスケット用のアルミニウム合金(MB-A3004 材)及びホウ素添加(B₄C 添加粉末冶金)アルミニウム合金(BC-A6N01 材)を対象に、 以下を審議し、確認した。

- ① 60 年間の供用期間を想定した供試材の作製方法として、これまで実施されてきた長時間過時効熱処理と、金属組織の平衡状態の再現を目的とした完全焼なまし熱処理を選定した。
- ②完全焼なまし熱処理材の強度や導電率が、長時間過時効熱処理材と概ね一致することで、60年間の供用期間を想定した供試材の熱処理方法の妥当性を確認した。
- ③両熱処理材データを用い、各温度での設計強度を設定した。
- ④アルミニウム合金を 250℃で 60 年間、構造材として使用するにあたって懸念され る、その他の破壊靱性やクリープひずみに係る性能を確認した。
- ⑤金属製乾式キャスクバスケットの設計に用いるその他の物性値を設定した。

8. 結言

本確性試験では、金属製乾式キャスクバスケット用のアルミニウム合金及びホウ素添加(B4C添加粉末冶金)アルミニウム合金を対象に、60年間の供用期間を想定した供試材の作製方法、材料特性評価、各設計強度の設定方法の妥当性を確認し、金属製乾式キャスクバスケットの設計に用いる各温度での設計強度や物性値を設定することができた。

参考文献

- [1] 軽金属学会:アルミニウム合金の組織と性質(1991)
- [2] 梶山毅、深田和博: 軽金属 Vol 38, No.6 (1988) pp. 362-373
- [3] 小菅張弓: 軽金属 Vol.57, No.2 (2007) pp.88-95
- [4] 馬場義雄: 軽金属 Vol 30, No.9 (1980) pp. 520-533
- [5] 稲葉隆、碓井栄喜、信濃昇: 軽金属 Vol.39, No.1 (1989) pp.3-7
- [6] 浅見重則、土公武宜、八木啓介: 軽金属 Vol.39, No.2, (1989) pp.94-100
- [7] 辻宏和、掛札和弘、中島甫:日本原子力研究所 JAERI-M レポート、JAERI-M-90-191 試験研究炉用アルミニウム及びアルミニウム合金の降伏点 Sy 及び設計引張強さ Su の 案の策定(1990)
- [8] 構造健全性評価ハンドブック編集委員会編,構造健全性評価ハンドブック,共立出版 (2005)
- [9] 横山隆,岸田敬三,他:日本航空宇宙学会,構造強度に関する講演会講演集 Vol.31 (1989) pp. 176-179
- [10] S. Rizal, H. Homma: 日本機械学会東海支部総会講演会講演論文集 Vol.50 (2001) pp. 125-126
- [11] A. Andrzejewski, J. Klepaczko and G. Pluvinage : J. Eng. Mater. Technol. Vol. 104, No.1 (1982) pp.29-35
- [12] J.P. Gallagher, F.J. Giessler, and A.P. Berens: USAF damage tolerant design handbook : guidelines for the analysis and design of damage tolerant aircraft structures, Flight Dynamics Laboratory, 1984

添付資料1

MB-A3004 材料規定

バスケット格子用材料

アルミニウム合金 (MB-A3004-H112) に関する規定書

目 次

1.	概	要	·添付資料	1-1
2.	適	用範囲	·添付資料	1-1
3.	材	料規定	·添付資料	1-1
e e	3.1	材料名称	·添付資料	1-1
e e	3.2	化学成分	·添付資料	1-1
e e	3.3	設計応力強さ	·添付資料	1-1
e e	3.4	許容引張応力	·添付資料	1-1
e e	3.5	設計降伏点	·添付資料	1-2
e e	3.6	設計引張強さ	·添付資料	1-2
e e	3.7	縦弾性係数······	·添付資料	1-2
e e	3.8	線膨張係数	·添付資料	1-2
4.	製	造管理規定	·添付資料	1-3

1.概要

使用済燃料乾式貯蔵輸送兼用キャスクのバスケットに適用するバスケット格子用材料 アル ミニウム合金(MB-A3004-H112)の材料規定について規定する。

2. 適用範囲

使用済燃料乾式貯蔵輸送兼用キャスクのバスケット格子に適用するにあたり、本材料及びこ れを使用するバスケットは以下の事項に適合すること。

- (1) 設計貯蔵期間(供用期間)は60年以下であること。
- (2) バスケットが収納されるキャスク本体内部には、設計貯蔵期間中ヘリウムガスを封入し、 不活性ガス雰囲気が維持されていること。
- (3) バスケットは耐圧構造でないこと。
- (4) バスケットは溶接部がない構造とすること。
- (5) 本材料はボルト材として使用しないこと。
- (6) 供用状態によらずバスケット格子の発生応力は、弾性範囲内となる構造とすること。
- (7) 供用状態によらずバスケットは長期間にわたる熱応力を生じない構造とすること。

3.材料規定

本規定は、設計貯蔵期間における熱劣化を考慮した設計評価に適用する材料規定である。本 規定を適用する材料は、4.に示す製造管理規定を満足しなければならない。

3.1 材料名称

材料の規定名称は表1に示すものであること。

3.2 化学成分

化学成分は表2に示す百分率の値の範囲内にあること。

3.3 設計応力強さ

設計応力強さは表3の規定によること。

3.4 許容引張応力

許容引張応力は表4の規定によること。

無断複写 · 転載禁止

- 3.5 設計降伏点設計降伏点は表 5 の規定によること。
- 3.6 設計引張強さ設計引張強さは表 6 の規定によること。
- 3.7 縦弾性係数
 縦弾性係数は表 7 の規定によること。
- 3.8 線膨張係数
 線膨張係数は表 8 の規定によること。

3.9 熱伝導率

熱伝導率は表9の規定によること。

3.10 比熱

比熱は表10の規定によること。

無断複写 · 転載禁止

4.製造管理規定

本規定は、製造管理に係る規定である。

- (1)化学成分は、表 2 に示す百分率の値の範囲内にあること。この場合において、化学成分は 溶湯成分分析によること。化学成分の分析試験は、JIS H 4100「アルミニウム及びアルミ ニウム合金の押出形材」(以下「JIS H4100」という。)によること。
- (2) 材料の製造は図1に示す製造フローに従い、熱間押出成形加工されたものであること。
- (3)熱間押出成形加工後、熱処理は行わず、空冷されたものであること。熱間加工によって得ら れるか又はごくわずかな冷間加工を加えただけの状態であること。質別 H112 は、JIS H 0001「アルミニウム、マグネシウム及びそれらの合金-質別記号」によること。
- (4)機械的性質は、表 11 に掲げる値に適合すること。
- (5)製品の寸法の許容差は、以下及び JIS H 4100 によること。これを逸脱する寸法を適用する 場合、機械的性質が表 11 を満足することを確認すること。
 - ・肉厚 : 16mm 以下
 - ・押出比^(注):10以上
 - (注) ビレットの押出方向に垂直な断面積と押出材の押出方向に垂直な断面積の比
- (6)本材料は、耐食性向上等を目的として表面処理を行う場合がある。表面処理を行う場合、機 械的性質が表 11 を満足することを確認すること。
- (7)本材料は、図1の製造フローの各段階において、適切な品質管理を行うこと。
- (8) 上記規定以外の規定については、JIS H 4100 又は EN 755-1「Aluminium and aluminium alloys- Extruded rod/bar, tube and profiles Part 1: Technical conditions for inspection and delivery」によること。

表1 材料の規定名称

材料の名称	記号	質別
バスケット格子用材料	MD 4 2004	II110
アルミニウム合金(MB•A3004•H112)	MB-A3004	П112

表 2 化学成分規定

					化气	学成分	(ma	.ss%)				
記号	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ga,V,Ni,	Ti	その他		Al
					U			B,Zr など		個々	合計	
MB-A3004	0.30 以下	0.7 以下	0.25 以下	1.1 以上 1.5 以下	1.0 以上 1.3 以下	Ι	0.25 以下	_	_	0.05 以下	0.15 以下	残部

表 3 材料の各温度における設計応力強さ S_m^{(注1)(注2)}

単位:MPa

		温 度(℃)										
記号	$-40 \\ \sim 40$	75	100	125	150	175	200	225	250	275	300	
MB-A3004	49	47	47	47	45	40	34	29	23	19	17	

(注1) 温度の中間における値は、比例法によって計算する。

(注2)時効による強度低下を考慮した値である。

表 4 材料の各温度における許容引張応力 S (注1)(注2)

単位:MPa

		温 度 (℃)										
記号	$-40 \\ \sim 40$	75	100	125	150	175	200	225	250	275	300	
MB-A3004	45	41	41	36	27	21	15	11	9	6	5	

(注1) 温度の中間における値は、比例法によって計算する。

(注2)時効による強度低下を考慮した値である。

表5 材料の各温度における設計降伏点 S v (注1)(注2)

単位:MPa

					温	度(C)				
記号	$-40 \\ \sim 40$	75	100	125	150	175	200	225	250	275	300
MB-A3004	73	71	71	71	71	71	67	61	53	44	36

(注1) 温度の中間における値は、比例法によって計算する。

(注2)時効による強度低下を考慮した値である。

表 6 材料の各温度における設計引張強さ S_u^{(注1)(注2)}

単位:MPa

					温	度(C)				
記号	-40 ~40	75	100	125	150	175	200	225	250	275	300
MB-A3004	159	146	146	146	135	121	104	87	71	58	51

(注1) 温度の中間における値は、比例法によって計算する。

(注2)時効による強度低下を考慮した値である。

無断複写 · 転載禁止

表7 材料の各温度における縦弾性係数(注1)

単位:MPa

訂므					Ŷ	温 虏	₹ (°C)					
	20	50	75	100	125	150	175	200	225	250	275	300
MD-49004	7410	7350	7300	7240	7160	7090	7000	6900	6800	6690	6570	6450
MD ⁻ A5004	0	0	0	0	0	0	0	0	0	0	0	0

(注1)温度の中間における値は、比例法によって計算する。

表8 材料の各温度における線膨張係数^(注1)

単位:×10⁻⁶mm/mm℃

記号	区分					김	昰 度	(°C)					
記万	(注2)	20	50	75	100	125	150	175	200	225	250	275	300
	А	22.4	23.4	24.1	24.5	24.9	25.1	25.4	25.6	25.9	26.4	27.0	27.8
MD ⁻ A3004	В	22.8	23.1	23.4	23.6	23.8	24.0	24.2	24.4	24.6	24.8	24.9	25.1

(注1) 温度の中間における値は、比例法によって計算する。

(注2)区分Aは瞬時線膨張係数、区分Bは室温から当該温度までの平均線膨張係数を表す。

表9 材料の各温度における熱伝導率(注1)

単位:W·m⁻¹·K⁻¹

訂旦					i	温厚	〔℃〕					
記万	20	50	75	100	125	150	175	200	225	250	275	300
MB-A3004	160.4	163.9	166.7	169.2	171.5	173.6	175.5	177.3	178.8	180.1	181.2	182.2

(注1)温度の中間における値は、比例法によって計算する。

表 10 材料の各温度における比熱(注1)

単位:J·kg⁻¹·K⁻¹

記号						温 厚	〔℃〕					
記方	20	50	75	100	125	150	175	200	225	250	275	300
MB-A3004	885	896	905	914	923	933	943	954	964	975	987	998

(注1) 温度の中間における値は、比例法によって計算する。

無 断	複	写	•	転	載	禁	止
-----	---	---	---	---	---	---	---

		引張試験	
封 모.	(試験温度:常温)	
記万	引張強さ	耐力	伸び
	(MPa)	(MPa)	(%)
MB-A3004	159 以上	73 以上	15 以上

表 11 機械的性質 (注1)

(注1) 時効による強度低下を考慮しない供用開始前の製造管理値である。

図1 製造フロー

添付資料2

BC-A6N01 材料規定

バスケット格子用材料

ほう素添加アルミニウム合金(B4C添加粉末冶金A6N01-T1)に関する規定書

目 次

1.	概要	[·添付資料	2-1
2.	適用	範囲	·添付資料	2-1
3.	材料	規定	·添付資料	2-1
	3.1	材料名称	·添付資料	2-1
	3.2	化学成分	·添付資料	2-1
	3.3	設計応力強さ	·添付資料	2-1
	3.4	許容引張応力	·添付資料	2-1
	3.5	設計降伏点	·添付資料	2-2
	3.6	設計引張強さ	·添付資料	2-2
	3.7	縦弾性係数	·添付資料	2-2
	3.8	線膨張係数	·添付資料	2-2
4.	製造	·管理規定 ······	·添付資料	2-3

1. 概要

使用済燃料乾式貯蔵輸送兼用キャスクのバスケットに適用するバスケット格子用材料 ほう 素添加アルミニウム合金(B₄C添加粉末冶金A6N01-T1)の材料規定及び製造管理規定につい て規定する。

2. 適用範囲

使用済燃料乾式貯蔵輸送兼用キャスクのバスケットのバスケット格子に適用するにあたり、 本材料及びこれを使用するバスケットは以下の事項に適合すること。

- (1) 設計貯蔵期間(供用期間)は60年以下であること。
- (2) バスケットが収納されるキャスク本体内部には、設計貯蔵期間中ヘリウムガスを封入し、 不活性ガス雰囲気が維持されていること。
- (3) バスケットは耐圧構造でないこと。
- (4) バスケットは溶接部がない構造とすること。
- (5) 本材料はボルト材として使用しないこと。
- (6) 供用状態によらずバスケット格子の発生応力は、弾性範囲内となる構造とすること。
- (7)供用状態によらずバスケットは長期間にわたる熱応力を生じない構造とすること。
- 3. 材料規定

本規定は、設計貯蔵期間における熱劣化を考慮した設計評価に適用する材料規定である。本 規定を適用する材料は、4.に示す製造管理規定を満足しなければならない。

3.1 材料名称

材料の規定名称は表1に示すものであること。

3.2 化学成分

化学成分は表2に示す百分率の値の範囲内にあること。

3.3 設計応力強さ

設計応力強さは表3の規定によること。

3.4 許容引張応力

許容引張応力は表4の規定によること。

- 3.5 設計降伏点設計降伏点は表 5 の規定によること。
- 3.6 設計引張強さ
 設計引張強さは表 6 の規定によること。
- 3.7 縦弾性係数
 縦弾性係数は表7の規定によること。
- 3.8 線膨張係数
 線膨張係数は表 8 の規定によること。

3.9 熱伝導率

熱伝導率は表9の規定によること。

3.10 比熱

比熱は表10の規定によること。

無断複写 · 転載禁止

4. 製造管理規定

本規定は、製造管理に係る規定である。

- (1) 化学成分は、アルミニウム合金成分(B₄C を除く)及び製品の添加成分が、表2に示す百 分率の値の範囲内にあること。この場合において、化学成分は原料粉末の溶湯成分分析に よること。化学成分の分析試験は、JISH 4100「アルミニウム及びアルミニウム合金の押 出形材」(以下「JISH 4100」という。)によること。
- (2) 材料の製造は図1に示す製造フローに従い、熱間押出成形加工されたものであること。
- (3) 押出材のように高温の製造工程から冷却後積極的に冷間加工を行わず、十分に安定な状態 まで自然時効させたものであること。したがって、矯正してもその冷間加工の効果が小さ いものであること。質別 T1 は、JIS H 0001「アルミニウム、マグネシウム及びそれらの 合金-質別記号」によること。
- (4) 機械的性質は、表 11 に掲げる値に適合すること。
- (5) 製品の寸法の許容差は、以下及び JIS H 4100 によること。これを逸脱する寸法を適用す る場合、機械的性質が表 11 を満足することを確認すること。
 - ・肉厚 : 16 mm 以下
 - ・押出比^(注) : 10 以上

(注) ビレットの押出方向に垂直な断面積と押出材の押出方向に垂直な断面積の比

- (6)本材料は、耐食性向上等を目的として表面処理を行う場合がある。表面処理を行う場合、 機械的性質が表 11 を満足することを確認すること。
- (7) 本材料は、図1の製造フローの各段階において、適切な品質管理を行うこと。
- (8) 上記規定以外の規定については、JIS H 4100 又は EN 755-1「Aluminium and aluminium alloys- Extruded rod/bar, tube and profiles - Part 1: Technical conditions for inspection and delivery」によること。

表1 材料の規定名称

材料の名称	記号	質 別
バスケット格子用材料	DC ACNO1	M 1
ほう素添加アルミニウム合金(B4C 添加粉末冶金 A6N01-T1)	BC-A6N01	11

表 2 化学成分規定

記号					化学	:成分(mass%	b) ^(注1)					添加 成分 ^(注2)
	Si	Fe	Cu	Mn	Мg	Cr	Zn	V,Zr,Ni, Bなど	Ti	そ0 個々	つ他 合計	Al	B+C (B ₄ C)
BC-A6N01	0.50 ~ 0.9	0.35 以下	0.35 以下	0.50 以下	$0.40 \\ \sim 0.8$	0.30 以下	0.25 以下	Mn+Cr 0.50 以下	0.10 以下	0.05 以下	0.15 以下	残部	$\begin{array}{c} 6.9 \\ \sim 7.1 \end{array}$

(注1) Al 成分にはアルミニウム合金粉末製造時に不可避的に混入する O 成分を含む。

(注2) B₄C は平均粒径 20µm 以下であること。

表 3 材料の各温度における設計応力強さ S_m^{(注1)(注2)}

単位:MPa

		温 度 (℃)											
記号	-40 ~ 40	75	100	125	150	175	200	225	250				
BC-A6N01	43	40	38	36	34	31	28	25	22				

(注1) 温度の中間における値は、比例法によって計算する。

(注2) 時効による強度低下を考慮した値である。

表 4 材料の各温度における許容引張応力 S (注1)(注2)

单位:MPa

				温	度(C)			
記号	-40 ~ 40	75	100	125	150	175	200	225	250
BC-A6N01	43	38	35	30	23	18	15	13	12

(注1) 温度の中間における値は、比例法によって計算する。

(注2) 時効による強度低下を考慮した値である。

単位:MPa

		温 度 (℃)											
記号	$-40 \\ \sim 40$	75	100	125	150	175	200	225	250				
BC-A6N01	65	60	57	55	52	49	46	43	40				

(注1) 温度の中間における値は、比例法によって計算する。

(注2) 時効による強度低下を考慮した値である。

表 6 材料の各温度における設計引張強さ S₁^{(注1)(注2)}

単位:MPa

<u>⇒</u> न ∎				温	度(°	C)			
記号	-40 ~40	75	100	125	150	175	200	225	250
BC-A6N01	152	134	125	116	105	95	85	75	66

(注1) 温度の中間における値は、比例法によって計算する。

(注2) 時効による強度低下を考慮した値である。

無断複写 · 転載禁止

表5 材料の各温度における設計降伏点S、(注1)(注2)

表7 材料の各温度における縦弾性係数 (注1)

単位:MPa

記号					温厚	€ (°C)				
百四万	20	50	75	100	125	150	175	200	225	250
BC-A6N01	84000	83290	82500	815500	804300	719700	777300	761400	743900	724800

(注1) 温度の中間における値は、比例法によって計算する。

表8 材料の各温度における線膨張係数(注1)

単位:×10⁻⁶mm/mm℃

	区				温	度	(°C))			
記号	分 (注2)	20	50	75	100	125	150	175	200	225	250
DO AQUOI	А	19.7	20.3	20.8	21.2	21.6	21.9	22.2	22.5	22.8	23.0
DC-A0INU1	В	19.2	19.7	20.1	20.4	20.7	21.0	21.2	21.4	21.6	21.7

(注1) 温度の中間における値は、比例法によって計算する。

(注2) 区分Aは瞬時線膨張係数、区分Bは室温から当該温度までの平均線膨張係数を表す。

表9 材料の各温度における熱伝導率(注1)

単位: $W \cdot m^{-1} \cdot K^{-1}$

⇒1.₽.					i	温厚	〔℃)					
記万	20	50	75	100	125	150	175	200	225	250	275	300
BC-A6N01	189.1	190.0	190.7	191.2	191.6	191.8	191.9	191.9	191.7	191.3	190.9	190.2

(注1) 温度の中間における値は、比例法によって計算する。

表 10 材料の各温度における比熱(注1)

単位:J·kg⁻¹・K⁻¹

記号					Ì	温尽	度(℃)					
記夕	20	50	75	100	125	150	175	200	225	250	275	300
BC-A6N01	907	927	943	958	973	988	1003	1017	1031	1045	1058	1072

(注1) 温度の中間における値は、比例法によって計算する。

		引張試験								
記号	(試験温度:常温)									
	引張強さ(MPa)	耐力 (MPa)	伸び (%)							
BC-A6N01	152 以上	65 以上	16以上							

表 11 機械的性質 (注1)

(注1) 時効による強度低下を考慮しない供用開始前の製造管理値である。

1	原制	料粉:	末の	つ受	けス	、れ
			,			
2	粉	末	0	D	混	合
			,			
3	ビ	レ	ツ	ŀ	成	形
	(真	空	焼	結)
			,	ļ		
4	熱	l	ij	担	3	出
				ļ		
5	切	断		•	加	I
				ļ		
6	検					査

図1 製造フロー

参考資料1

アルミニウム合金の機械的性質に及ぼす 中性子照射の影響について アルミニウム合金の機械的性質に及ぼす中性子照射の影響について

	目次		
1.	照射影響について	参考資料	1-1
2.	照射影響の要約	参考資料	1-1
3.	BC-A6N01 材の照射試験	参考資料	1-2
4.	文献情報(照射量と強度の関係)	参考資料	1-7
5.	文献情報(照射量とクリープの関係)参	≽考資料1	-10

1. 照射影響について

使用済燃料乾式貯蔵輸送兼用キャスクのバスケット格子用アルミニウム合金に係る 中性子照射による材料特性に関する影響についてまとめる。

- 2. 照射影響の要約
- (1) 検討内容

BC-A6N01 及び MB-A3004 に対して、次の検討を行った。

- 中性子照射試験結果の分析、検討
- ② 中性子、電子線、Heイオン等の照射影響に関する文献調査

(2) 検討結果

BC-A6N01 については、①,②を、MB-3004 については、②を実施した。

- (a) BC-A6N01に対する中性子照射(約4.3×10¹⁶n/cm²)試験の結果、照射前後の引 張試験を実施し、有意な強度特性変化が無いことを確認した。
- (b) 文献調査の結果、短期間に 2×10¹⁷n/cm²の照射量からボイド形成される報告や、 10²¹n/cm²を超える照射量から材料特性(強度、クリープ)影響が生じることが 報告されていることを確認した。 このようにキャスク使用環境(60年間の保守的な照射量 1.4×10¹⁵ n/cm²)を 2 桁以上超える照射量より材料特性変化が確認されていることから、キャスク使用 環境では、有意な材料特性変化は生じないと考えられる。
- (3) 照射影響に対する結論要約
 - (a) キャスクバスケット使用環境は、60年間の総照射量(中性子)が1.4×10¹⁵ n/cm² 以下であり、この中性子照射による有意な強度特性への影響はない。
 - (b) キャスクバスケット使用環境は、60年間の総照射量(中性子)が1.4×10¹⁵ n/cm² 以下であり、この中性子照射による有意なクリープ特性への影響はない。

3. BC-A6N01 材の照射試験

- (1) 中性子照射後引張試験条件
 - ・供試材 : 符号 K および M を試験に供した。
 - ・試験片
 : 丸棒試験片(図1)を用いた。
 - ・ 試験片採取方向:引張方向が押出方向に平行になるように試験片を採取した。
 - ・中性子照射条件:バスケットが 60年間に受けると想定される保守的な照射量

(1.4×10¹⁵ n/cm²)を上回る約 4.3×10¹⁶n/cm²の照射を行った。
 照射は室温で実施した。

弥生炉仕様

最大出力 2kW/h, 中性子束 0.8×10¹²n/cm²·sec (2kW)

30kW 積算照射量(15hr)となるように照射を実施

(約 4.3×10¹⁶n/cm²)

- ・試験温度 : 室温、150、200及び250℃
- 記録
 : 引張強さ、0.2%耐力及び伸び

(a) 試験片図

(b) 照射ケース配置図図1 中性子照射影響評価用引張試験片形状図及び配置図

(2) 試験結果

図2及び表1に、BC-A6N01材の照射前後における引張試験結果を示す。

照射後の強度が若干高めとなったが差異は僅かである。一方、伸びについては明 確な傾向が確認されなかった。よって、中性子照射に伴うボイドハードニングにつ いて、強度特性へ有意に影響しなかったと考えられる。

なお、MB-A3004の照射試験は実施していないが、成分として Mn の添加量の違いのみであるため、同じ中性子照射量(約 4.3×10¹⁶n/cm²)を受けたとしても、 BC-A6N01 材と同様に影響は殆ど生じないと考えられる。

図 2 約 4.3×10¹⁶n/cm²中性子照射前後の BC-A6N01 材の引張試験結果

/++ ⇒+ ++		照射前			照射後	
供訊材	0.2%耐力	引張強さ	伸び	0.2%耐力	引張強さ	伸び
K	(MPa)	(MPa)	(%)	(MPa)	(MPa)	(%)
告泊	94	166	25.2	97	164	22.2
市恤	92	162	26.0	93	161	22.8
15000	77	112	34.8	79	117	32.0
150 C	81	113	34.0	79	115	28.4
200%	68	84	41.2	66	90	37.5
200 C	71	87	31.6	66	90	37.9
250°C	48	58	40.0	49	64	45.0
250 C	49	57	36.4	55	69	34.4

表1 約4.3×10¹⁶n/cm2中性子照射前後のBC-A6N01の引張試験結果(1/2)

表 1 約 4.3×10¹⁶n/cm2 中性子照射前後の BC-A6N01 の引張試験結果 (2/2)

/┼┼╕╧╱┟╁╱		照射前			照射後	
供武羽	0.2%耐力	引張強さ	伸び	0.2%耐力	引張強さ	伸び
IVI	(MPa)	(MPa)	(%)	(MPa)	(MPa)	(%)
告泪	78	160	22.5	84	158	21.9
市加	78	159	20.5	83	157	22.5
150°C	68	110	31.0	72	115	31.9
100 C	67	112	29.5	72	116	32.6
200%	58	83	38.0	61	91	37.4
200 C	60	86	34.5	64	91	39.7
250°C	44	60	37.5	48	65	35.2
250 C	44	58	37.5	47	63	41.6

4. 文献情報(照射量と強度の関係)

図3と図4にBC-A6N01材に化学成分が類似するA6061-O材の引張特性に及ぼ す中性子照射量の影響を示す^[1]。それぞれ50°Cと150°Cでの引張試験結果であり、 横軸に示された中性子照射を行った後に行った引張試験結果を縦軸に示している。 本結果は、中性子照射による0.2%耐力と引張強さの増大、伸びの低下が10²¹n/cm² 以上の照射量によって発現してくることを示している。

図 3 A6061-Oの 50°C における機械的性質に及ぼす中性子照射の影響^[1]

図 4 A6061-Oの 150°C における機械的性質に及ぼす中性子照射の影響^[1]

また、加賀らは、A6N01他の母材と溶接部に 90℃で 2.0×10¹⁸ n/cm²~1.7×10¹⁹ n/cm²の中性子を照射した材料に対する引張強度等への影響を試験しており、図 5 に 示すように A6N01 母材に対しては有意な影響が認められなかったことを報告してい る。^[2]

図 5 A6N01の機械的性質に及ぼす中性子照射の影響 [2]

その他、Horsewell らは、純アルミ材に 120℃で 5×10²⁰ n/cm²(0.65 dpa) 迄の中 性子を照射したときの影響について、2×10¹⁷ n/cm²(6×10⁻⁴ dpa) からボイドが観察 されたことを報告している^[3]。(TEM 観察写真は 1×10²⁰ n/cm²以上のものが掲載さ れている。)

また、S.R.Soria らは、純アルミ材にヘリウムイオンを照射し、原子間力顕微鏡(AFM) や SEM により 1 dpa に相当する 1.72×10¹⁶ ions/cm²以上でブリスターが観察された ことを報告している^[4]。(観察写真は 1 dpa 以上のものが掲載されている。) ここで、 1 dpa は前述の文献 [1] を参考に換算すると、約 7×10²⁰ n/cm²に相当する。^[4]

以上の通り、これら文献によるボイドの発生や機械的性質の変化が生じ始めると報告されている照射量は 2×10¹⁷ n/cm²から 10²¹ n/cm²程度迄であるが、バスケットに用いられるアルミ材への照射量は使用済燃料からの貯蔵初期の中性子照射が 60 年間継続するとした保守的な評価でも 1.4×10¹⁵ n/cm²であることから、これら照射量に比して十分小さいため、有意な強度特性への影響はないと考えられる。

5. 文献情報(照射量とクリープの関係)

放射線環境下でのクリープ特性について検討した。

文献^[5]によると純アルミ材に対する中性子照射環境下でのクリープ試験において、 クリープひずみが非照射に比べ約 20 倍に増加した。

文献の照射環境はおおよそ以下の通りである。

- ・中性子束: 1.4×10¹⁶ (n/m²・s)
- ・中性子線量:1.4×10¹⁶ (n/m²・s)×10000(cm²/m²)×10(h)×3600(s/h)

 $=5.04 \times 10^{16} (n/cm^2)$

(図中最初のプロットである 10h で算出。)

文献の照射データは、バスケットの使用環境と比べ貯蔵初期の中性子束(7×10⁵ n/cm²⋅s)で10桁異なる。また、同文献での照射量は使用環境の中性子束が保守的に 60年間継続すると仮定した照射量(1.4×10¹⁵ (n/cm²))に対しても、1桁以上高い。 キャスク使用環境の照射量は、実験条件の中性子束での照射時間に換算すると約 0.3 時間(1.4×10¹⁵ (n/cm²)/(5.04×10¹⁶ (n/cm²)/10(hr)))に相当し、図6中の赤線に示 すように照射の影響が僅かな領域であることから、照射線量の影響は無視できると考 える。

なお、重照射の文献の多い中では比較的近い環境と言えることから、本文献を参考 としてクリープに伴うバスケット構造健全性について検討した。なお、試験温度は 393K(120℃)であり、バスケットの使用環境 200→100℃(実質約 150℃)と比べ若 干低い。

図 6 銅及びアルミ材に対する中性子線束 1.4×10¹⁶ (n/m²・s)の照射環境下での クリープ試験結果^[5]

Copper (1,2) and aluminum (3,4) curves at stresses 57 and 14.7 MPa and temperature 523 and 393 K, respectively. (2,4) in reactor; neutron flux density is $1.4 \times 10^{16} \text{ Nm}^{-2} \text{s}^{-1}$.

現有のクリープ試験結果に対し、上記文献を参考に約20倍のクリープひずみへの影響を考慮して、照射によるクリープ強度への影響を推定した。

現有のクリープ試験結果から、MB-A3004及び BC-A6N01 材の定常クリープ速度強度は表2のとおり整理している。設計強度は10万時間の破断強度を算出したものであるが、ここでは歪速度が20倍になることを、簡易的に時間を20倍することで考慮し、200万時間の破断強度と比較する。(図7及び図8参照)

なお、時間外挿する倍率が大きいため参考値である。

		クリープ破断強度(MPa)		
	クリープ破断強度評価式	10万h	200 万 h	
MB-A3004	LMP = $14.36 - 3.404(\log \sigma)$	26.5	18.6	
	$-0.221(\log\sigma)^2$			
DC ACNO1	LMP=67.45-93.31logo		22.1	
BC-A6N01	$+51.14(\log\sigma)^2 - 9.773(\log\sigma)^3$	26.5	22.1	

表2 クリープ破断強度評価式及びクリープ破断強度の推定値

ここで、LMP = (T+273.15)×(C+logTr)×0.001

T: 温度(℃) = 200℃、Tr: 破断時間

定数 C: BC-A6N01=16.26、MB-A3004=14.16

以上の簡易評価の結果、2次近似をしている MB-A3004 材において約 7MPa、3次 近似している BC-A6N01 において約 4MPa クリープ破断強度が低下する結果が得ら れたが、キャスク貯蔵中の発生応力 1 MPa 未満に対して、十分な強度を有しているこ とが確認できた。

なお、温度(~200℃)、線量(1.4×10¹⁵ n/cm²)とも時間減衰を考慮しておらず、 また図5に示す通り線量評価も10倍以上の差異の大きい仮定であるため、本検討条 件は保守側な推定である。

↓ 200℃×200 万 h

図7 A3004-H112 応力-破断時間プロット

↓ 200℃×200 万 h

図 8 BC-A6N01 応力・破断時間プロット

【引用文献】

- [1]: K.Farrell and R.T.King, Tensile properties of neutron irradiated 6061 aluminum alloy in annealed and precipitation-hardened conditions, Effects of Radiation on Structural Materials, ASTM STP 683 p440-449, (1979)
- [2]:加賀ら、低温構造用アルミニウム合金及びそれらの電子ビーム溶接継手の極低温 強度に及ぼす中性子照射の影響、京都大学原子炉実験所 Technical Report、 KURRI-TR-334、(1990)、P.30
- [3]: Andy Horsewell, et.al., "Influence of grain and subgrain boundaries on void formation and growth in aluminum irradiated with fast neutrons", Radiation-induced changes in microstructure, 13th International Symposium on Effects of Radiation on Material, ASTM STP 955, 220-229 (1987)
- [4]: S.R.Soria, et al., Defect induced by helium ion irradiation in aluminum alloys, Procedia Material Science 8 (2015), P.486-493
- [5]: Shavkat Sh. Ibragimov, et.al., "Radiation-induced creep of aluminum and copper alloy", Influence of Radiation on Material Properties, 13th International Symposium (Part II), ASTM STP 956, 23-25 June 1986,

参考資料2

金属製乾式キャスクバスケット用 アルミニウム合金における材料評価手法に関する 確性試験委員会審議資料 金属製乾式キャスクバスケット用アルミニウム合金における 材料評価手法に関する確性試験(MAC)委員会議事録 金属製乾式キャスクバスケット用アルミニウム合金における 材料評価手法に関する確性試験(MAC)委員会

第1回委員会 議事要旨

- 1. 日 時 : 平成 28 年 1 月 20 日 (水) 13 : 30 ~ 17 : 00
- 2. 場 所 : (一財) 発電設備技術検査協会 EF 会議室
- 3. 出席者(順不同、敬称略)

委員長: 三枝(電力中央研究所) 委 員: 辻(東京電機大学)、丸山(東北大学)、三浦(豊橋技術科学大学) 横山 (岡山理科大学) 依頼者: 玉置、北条、石生、川原、山本、吉本(三菱重工)

- 事務局: 藤富、押部、佐藤、大石、長谷川(発電技検)
- 4. 配布資料:
 - MAC 1-1 委員名簿
 - MAC 1-2 確性試験委員会設置マニュアル
 - MAC 1-3 使用済燃料乾式輸送・貯蔵容器キャスクについて
 - MAC 1-4 実施計画書 L5-95HQ001
 - MAC 1-5 技術データ概要
- 5.議事:
 - 5.1 (一財) 発電設備技術検査協会 挨拶 【資料 なし】 東日本大震災以降、キャスクもクローズアップされるようになり、まさにタイムリ ーなテーマである。経験に基づく発展は非常に重要であり、さらに新しい知見も加え て良い成果が得られるよう、活発な議論をお願いしたい。
 - 5.2 依頼者 挨拶 【資料 なし 当社は 30 年間、キャスクの設計製造や許認可に携わってきた。キャスクは使用済燃 料を貯蔵保管するため、安全性の面でプラントと同様に大きな責任を有する機器であ る。今回のアルミ合金は15年ほど前から開発しているが、JSME 事例規格の廃止を背 景に改めて、データを充実させたアルミ合金の技術的妥当性を確認したいと考えてい る。
 - 5.3 確性試験委員会委員長及び委員の紹介 【資料 MAC 1-1 資料に基づき、委員長及び委員の紹介が行われた。
 - 5.4 確性試験委員会設置マニュアルについて 【資料 MAC 1-2】 資料に基づき、確性試験規則及び委員会マニュアルに関する説明が行われた。機密 の保持については特に依頼があった。
 - 5.5 委員長 挨拶 30 年にわたりキャスクの試験研究や開発に携わってきており、JSME 事例規格の廃 止の件も承知している。各委員にはそれぞれ専門家の立場からコメントをいただき目

無断複写 · 転載禁止

【資料 なし】

的が達成できるよう協力いただきたい。

【資料 MAC 1-3】

資料に基づき、乾式貯蔵容器キャスクの説明が行われた。以下の質疑応答及びコメ ントがあった。

[Q:質問 A:回答 C:コメント]

5.6 キャスクについて

- Q01: ヨーロッパでは最高使用温度が 250°C~300°C とのことだが、本確性試験で は設計の最高温度条件が 200°C でよいか。
- A01: 我が国の使用済燃料の許容温度はヨーロッパと比べて低い。使用済燃料の中 心温度を考慮して低めの設計温度としている。
- Q02: 200°C は燃料集合体の仕様や燃焼度、使用後の冷却期間等を考慮して設定した値と考えてよいか。また、材料特性として一番高温となる箇所が 200°C になると考えてよいか。
- A02: ご指摘のとおりである。燃焼度や冷却期間によっても異なるが、設計上は使用済燃料の中心が 200°C で、外側に向かうに従って温度は約 150°C まで低下する。このため、材料特性については 200°C まで検討すればよいと考える。
- Q03: 100℃という温度も一番高温になる場所の温度が 100℃と考えてよいか。
- A03: ご指摘のとおりである。放射能が減衰することを考慮すると、100°Cとなる。
- Q04: ひずみ速度によって強度が変わってくるのではないか。
- A04: ひずみ速度が強度に影響を及ぼすほどではないことをひずみ速度が高い領 域については解析で確認している。貯蔵中の静置状態においては、クリープ も考慮した値で評価している。
- C04: 本件は改めて議論して欲しい。
- Q05: 横置き状態での静的強度に問題はないのか。
- A05: 3MPa 程度の発生応力であり、影響を及ぼすほどではないと考えている。
- Q06: 緩衝体の接着剤強度が低下するとは、高温になると剥離するということか。
- A06: ご指摘のとおりである。緩衝体の内部は木材の組み合わせであるが、木材の 種類や含水量、方向など様々な条件を考慮して最適な条件で木材を配置し接 着している。高温に耐えられる接着剤の種類はほとんど存在しない。
- Q07: 日の字断面のバスケットと目の字断面のバスケットはどのような使い分け なのか。
- A07: 日の字の方は A3004 材の材料試験用の供試材として製作したものであり、 製品適用形状は目の字である。
- Q08: 800℃で 30 分間の耐火試験とはどのようなものか。
- A08: 800°C で 30 分間保持し、内部の使用済燃料が基準温度に達しないことを確認し、その後、キャスク自体の安全機能に問題ないかどうか確認する試験である。
- 5.7 確性試験実施計画案について

5.8 技術データ概要

【資料 MAC 1-4】 【資料 MAC 1-5】

資料に基づき、確性試験の実施計画案およびデータの説明が行われた。以下の質疑 応答及びコメントがあり、これを今後の検討に反映させることで実施計画案は承認さ れた。

- Q09: 押出しによって生じる曲りの原因は何か。
- A09: 金型内の圧力バランスにより偏りがあると曲がる。また、押出途中に曲がる のは添加した B₄C が研磨剤のように作用し金型を削ってしまうことで金型 に若干の寸法変化が生じ、押出しのバランスが崩れたことが原因と考えてい る。
- Q10: 押出しの初期と終端で化学成分に差はあるのか。
- A10: BC-A6N01 材は基本的に成分差がないと考える。厳密には熱履歴及び押出し 圧力により微妙に変化するかもしれないが、両端は使用しない。
- Q11: 材料の受入に合格基準はあるのか。また、使用する装置に規定はあるのか。
- A11: 受入基準は設けている。装置についても、仕様を指定している。
- C12: ビレットの均質化がノウハウと思われるため、供試材で得られた材料特性が その押出し材の全体を代表する、あるいは代表サンプルを用いることで全体 の材料特性を説明できるとする論理構築をしておいた方が望ましい。例え ば、押出しの初期と終端からも供試体を採取することも考えてはどうか。
- A12: ご指摘の点を検討する。
- C13: 計画書の表 3·3 にある、結晶粒微細化は室温において強化機構として働くことは理解できるが、200℃ はアルミ合金にとってはクリープ領域であり逆に強度は下がるので、強化機構の説明として違和感がある。また、200℃ は照射によってボイドクラスターができやすいため、状態図による説明のみでは不足ではないかと感じる。原研(現原子力機構)で材料試験炉の放射線下で引張試験を行ったデータがあったと記憶しており、参考にしてはどうか。
- A13: 照射の影響については次回以降に説明する。
- Q14: S_{Rmin} や S_{C} も平均ではなく 99%信頼下限から求めると考えてよいか。
- A14: ご指摘のとおりである。データの母数が少ないので、安全を見て下限を採用 するというスタンスである。
- Q15: 計画書の図 3-6 について、強度が平衡に達する時間はどのくらいか。
- A15: およそ 1000h 程度時効すれば平衡に達する。文献では、6000 系のアルミ合 金について 250℃~300℃ の場合は数 10h から数 100h で平衡になるとの知 見がある。
- Q16: 照射による損傷はどの程度発生するのか。
- A16: 資料 1-5-3 に一例を示しているが、原子炉に比べて非常に照射量が少ないの で、材料特性に影響を及ぼす程ではないと考えている。
- C17: 照射による引張強さや 0.2%耐力が上昇するという、ボイドハードニングという現象があること知見として提供する。
- A17: 照射が及ぼす影響やメカニズムについて、その他の関連する質疑・コメント と共に今後検討する。
- Q18: S 値の設定方法において"各温度での値はそれより低温の値を超えないよう に修正する"とあるが、これはどういう意味か。
- A18: 例えば、ある温度 T₂の許容引張応力 S₂がその温度より低い温度 T₁での許容 引張応力 S₁より大きい場合、温度 T₂の許容引張応力は S₂ではなく S₁とす る、という意味である。規格の一般的な考え方に従ってこのように定めた。
- C19: 資料 1-5-3 の図 9~図 12 について、0h~1000h の間の線をつなげると誤解 を与えるおそれがあるので、線の引き方を見直すことが望ましい。
- A19: ご指摘に従って見直す。
- C20: 完全焼なまし材と過時効材を比べた時に、伸びや絞りに差が出ている原因に ついて把握しているか。
- A20: 材料のチャージが違うことが影響しているのか、熱処理で用いた電気炉の特

性が影響しているのか、現在調査中である。

- Q21: 充填方向による差はないのか。
- A21: 差が出ないような充填方法を用いている。むしろ、押出し方向の影響の方が 大きい。
- Q22: 3000 系は同じバッチのデータであるのに対し、6000 系は異なるバッチのデ ータが含まれる理由は何か。
- A22: 6000 系は ASME に Code Case として提案した時のデータを活用しており、 追加データを採取した供試材とバッチが異なる。このことが、伸びや絞りに 影響している可能性がある。
- C23: 引張試験データに試験時のひずみ速度を記載した方がよい。また、ひずみ速 度が遅くても強度的に問題はないことを示すデータがあることが望ましい。
- A23: 現状では、落下等の衝撃に対する点を主に考えているので高速側のひずみ速 度を注視している。ひずみ速度の取り扱いについては検討する。
- Q24: 伸びや絞りは管理しているのか。
- A24: 絞りは管理していない。伸びは室温で 16%以上としている。これは JSME 事例規格を参考に定めた値である。
- Q25: B₄C 添加の影響で縦弾性係数が高めの値になっているとのことだが、集合組織の影響はないのか。
- A25: 試験片はL方向およびT方向から採取しており、その結果も踏まえて高めの 値になっている。現状では、影響を及ぼすほどの差とは考えていない。
- Q26: 資料 1-5-10 について、非時効材と過時効材では非時効材の方が強度は高い。 析出の状態が異なるのではないかという点が気になる。
- A26: 強度が高いのは 200℃ の非時効材だが、200℃ では押出し後の整直によって 生じた加工硬化が除去できていないのではないかと考えている。値を見る限 りでは、析出に関して大きな変化が現れているとは考えていない。
- Q27: バスケットを用いない場合、臨界に達する場合があるのか。
- A27: 乾式キャスクで通常水張りは行わないため臨界には達しないが、使用済燃料 を出し入れする際には水張りするので、燃料の燃焼条件によっては臨界に達 する可能性がある。
- **Q28**: 今回議論になるのは PWR 燃料用のバスケットだが、BWR 用燃料には使えないのか。
- A28: 使用可能であるが BWR 用燃料は PWR 用燃料に比べて寸法がやや小さい。 また BWR 用燃料は臨界になりにくい集合体設計となっており、PWR 用の バスケット部材構造である目の字断面とする必要がなく、板形状を採用して いる。
- *1C29: アルミニウム合金は 200°C 近辺で中間温度脆化が起こるとの報告も有り、その中間温度脆化はひずみ速度に強く依存することが知られている。おそらく両アルミニウム合金は、添加物量が高く中間温度脆化域が 200°C より高い可能性があるが、200°C 近近の引張挙動のひずみ速度依存性を調べ、後世に禍根を残さない様に安心できるデータを提示してほしい。

(※1:後日、コメントがあったため、議事要旨に追加)

5.9 今後のスケジュール案について 【資料 なし】 3月17日、18日、22日を次回委員会の候補日とし、事務局で調整後、連絡するこ ととした。

無断複写·転載禁止

5.10 その他

【資料 なし】

マイナンバー制度の開始に伴い、税務処理の関係上、各委員のマイナンバーを連絡 いただきたいとの要請があった。なお、連絡方法については、別途、事務局から各委 員へ連絡することとした。

以上

金属製乾式キャスクバスケット用アルミニウム合金における 材料評価手法に関する確性試験(MAC)委員会

第2回委員会 議事要旨

- 1. 日 時 : 平成 28 年 3 月 18 日 (金) 13 : 30 ~ 17 : 00
- 2. 場 所 : (一財) 発電設備技術検査協会 EF 会議室
- 3. 出席者(順不同、敬称略)

委員長: 三枝(電力中央研究所) 委員: 高山(宇都宮大学)、丸山(東北大学)、三浦(豊橋技術科学大学) 横山(岡山理科大学) 依頼者: 川原、石生、北条、山本(三菱重工) 事務局: 佐藤、大石、長谷川(発電技検)

4. 配布資料:

MAC 2-1 MAC 確性試験 第1回委員会 議事要旨案
MAC 2-2 MAC 確性試験 コメント回答表
MAC 2-2-2-2-2-2-5* コメント回答表に係る技術資料
MAC 2-3 基準強度設定に係る考え方
MAC 2-3-1 基準強度設定に係る技術資料 (MB-A3004)
MAC 2-3-2 基準強度設定に係る技術資料 (BC-A6N01)
番号なし 事前説明に関する情報共有メモ (事務局まとめ)
* 試験実施中のため MAC 2-2-1 は未配布

- 5. 議 事:
 - 5.1 前回議事要旨案の承認 【資料 MAC 2-1】 資料に基づき、前回議事要旨案の説明が行われた。コメント等はなく、前回議事要旨 案は承認されたが、A15 に関連し次の質疑応答があった。
 - [Q:質問 A:回答 C:コメント]
 - Q01: 10h~100h で平衡になるとのことだが、平衡の定義はあるのか。特性は合金 によって異なり、析出強化材の場合は析出や成長が進むが、この程度の時間 で平衡になるのか。
 - A01: 6000 系合金の強度低下に限った話であり、論文も公表されている。3000 系 や 5000 系の合金は平衡に達する時間は異なる。
 - Q02: 一部では、アルミ合金は 150°C 以上では使用すべきではないとの意見がある が、この意見に対してどのように考えるか。
 - A02: 150°C 以上で使用した場合に、時効と回復・再結晶により強度低下が生じる ことに対する懸念であると理解している。本委員会で検討しているように、 時効を考慮した設計強度を設定することで、150°C 以上でも使用可能である。
 - 5.2 コメント回答表及び関連する技術事項の確認 【資料 MAC 2-1, 2-2-2-2-5】 資料に基づき、前回委員会でのコメントに対する回答と、それに関連する技術事項の 説明が行われた。以下の質疑応答及びコメントであった。

- [Q:質問 A:回答 C:コメント]
 - Q03: 「ビレットからの試験片の採取位置に伴う強度特性に有意な差はない」との 回答だが、"有意な差"とは定量的にはどの程度か [MAC 2-2-2 参照]。
 - A03: 厳密に定量化することは難しいが、初期材の場合は冷間加工によるひずみの 影響もあるため、10%~20%程度の差であれば有意差はないと考えている。
 - Q04: 強度特性のデータについて、初期材のデータは用いているのか。
 - A04: 用いていない。初期材のデータは材料調達時の受入基準として使用する。
 - Q05: 初期材の基準はどのように決めているのか。
 - A05: 基本は伸びで管理している。特に 6000 系は冷却速度によって伸びが異なる。
 - Q06: 200°C での伸びの変化が大きいような印象を受ける [MAC 2-2-2 参照]。
 - A06: 塑性域の転位解放や回復再結晶等が影響していると考えている。なお、一般 的に絞りより伸びの方がバラつきの大きいことを勘案すると、図 C2-4 又は 図 C2-5 における、伸びと絞りのシンボルマークが入れ替わっている可能性 があるため、データを再チェックし適宜修正する。
 - C07: 修正の際、図 C2-2~2-5 について、引張試験におけるひずみ速度も記載する こと [MAC 2-2-2 参照]。
 - A07: 拝承。
 - Q08: 図 C3-1 に関して、高温では 0.2%耐力及び引張強さについて完全焼なまし材 と過時効材の差が小さいという説明だが、対数軸で縦軸をプロットした場 合、絶対値の差は少ないが比を取った時に差が出るのではないか。縦軸を対 数で整理してはどうか [MAC 2-2-2 参照]。
 - A08: 検討する。
 - Q09: 低温側で強度差が大きいとすると、完全焼きなまし材を使うべきであるということか。
 - A09: 完全焼きなまし材も過時効材も、結晶粒として現実的には起こり得ない組織 に対する評価となっている。どちらも平衡状態に達した組織と考えている が、60年後の組織により近い状態が過時効材であり、それより保守的な状態 の組織が完全焼きなまし材であると考えている。
 - Q10: 完全焼きなまし材が冷却速度を制御している一方、過時効材が冷却速度を制 御していないとすると、過時効材の組織が平衡状態に達していないというこ とにならないか。
 - A10: 導電率測定によって、冷却速度が低い場合の完全焼きなまし材の導電率と過 時効材の導電率が同程度となることを確認しているため、過時効材も平衡状 態に達したと考えている。
 - Q11: 導電率が固溶状態を示す指標となるのはなぜか。
 - A11: 置換型の固溶元素が添加されることで結晶格子にひずみが発生する。また、
 析出物によってもひずみが生じ、これらのひずみが導電率に影響する。
 ※委員より次の情報提供があった。
 導電率に対する添加元素の影響はあるが、主に電子の運動を妨げる要素が導電
 率に影響を与える。例えば、結晶粒径は影響を与える一例である。また、加工ひずみによって導電率が 3%~5%変化するという知見もある。
 - Q12: 析出量と固溶量は両者の和が一定の関係にあるので、完全焼きなまし材と過 時効材で析出量が同じでないと固溶量も同じだと言い切れず、導電率の比較 ができないのではないか。
 - A12: TEM 観察の結果から確認できる析出量は同程度であると判断している。 TEM 写真上では判別できない微細な析出物も考えられ、固溶元素の効果が

線形的に効いてくるとすれば固溶量は同程度と考えられる。

- C13: 導電率測定を実施した試験片に対してバフ研磨及びエッチングを施し、SEM の画像を2値化して観察すれば析出物が観察できるので、実施してはどうか。 できれば時間軸に対応したデータを示してほしい。
- A13: 検討する。
- Q14: 照射損傷に関して、中性子は材料中にどの程度侵入し、カスケード損傷を起 こすのか。また、照射試験における中性子のエネルギーはどの程度か。
- A14: エネルギーが>0.1MeVの場合、材料を貫通する。また、照射試験におけるエネルギーは実炉と同程度であるため、ほとんど貫通していると考えられる。
- Q15: 図 C5-1~C5-4 について、時効時間が 1000h 以上では析出物が飽和したと考 えてよいか [MAC 2-2-4 参照]。
- A15: ご指摘のとおりと判断している。
- Q16: 強度と伸びは相反するという感覚を持っているが、図 26~図 28 を見ると完 全焼きなまし材と過時効材で同程度の強度にもかかわらず、伸びに違いがあ る [MAC 2-2-5 参照]。
- A16: 伸びは全伸びである。高温材料、特に鉄鋼系の材料は局所伸びによって強度 を担保すると理解しているが、アルミ系は全伸びなので、強度は低くても伸びが大きくなることは一般的に考えられる現象である。 ※委員より次の情報提供があった。

動的再結晶や回復等の影響により、特に高温では伸びは不安定現象として一般 的に考えられ、図示されているような伸びの差が出ることは十分に考えられる。

- Q17: B₄C が脱落するのはなぜか。
- A17: B₄C は非常に硬くて研磨しにくく、研磨中に脱落してしまう。逆に少し脱落 させないと研磨ができない。
- - [Q:質問 A:回答 C:コメント]
 - Q18: 99%信頼下限を求める際、2.33 σ は決まった値なのか。
 - A18: 信頼性のあるデータについては、99%信頼下限は平均値-2.33 σ である。
 - Q19: 9m 落下試験の際にバスケットの組み合わせ部分にはどのくらいの応力がか かるのか。
 - A19: 200°C で 54~55MPa である。
 - Q20: 生体材料などでは 100%ミスがあってはならないとの思想で設計がなされ、 キャスクについてもこれに準じるとの認識だが、標準偏差はどの程度か。
 - A20: 3000 系で 6~7 σ、6000 系では発生応力を約 40MPa に抑えて約 4 σ である。
 - Q21: トレンドカーブ法を採用することはできないのか。
 - A21: 室温と高温で同じ試験数なので、トレンドカーブ法で処理したとしても同じ 結果になる。
 - Q22: 過時効材のデータ数が多いのはなぜか。
 - A22: 過時効材は大きな材料ブロックから試験片を採取しているため、データ数が 多い。一方、完全焼きなまし材は当初、過時効材の妥当性確認に主眼を置い ていたため、材料をそれほど用意しておらず、データ数が少ない。

無断複写

・転載禁止

- Q23: ボロンが中性子を吸収して損耗することはないのか。
- A23: 水中でないとボロンは中性子を吸収できない。また、ボロンは B¹⁰ と B¹¹の 2 種類であり、このうち、中性子を吸収する B¹⁰は 2 割程度含有している。仮 にこの 2 割の B¹⁰が、想定される中性子を全て吸収したとしても、ボロンの 損耗は 10⁻⁵程度であり、材料特性への影響は極めて低いと考えている。
- Q24: どちらの材料がより 60 年後に近いか、物理的に説明できることを期待したい。
- A24: 3000 系は固溶強化であり、完全焼きなまし材の方が保守側である。一方、 6N や 6000 系は Mg₂Si の析出強化であり、過時効材の方が想定される 60 年 後の実体に近いが、完全焼きなまし材の方が保守側である。
- C25: 統計処理におけるデータ数について、現状ではσ自体の信頼性が損なわれて いる状態での議論となっていないか。データ数が少ない場合の評価の信頼性 を担保する根拠や考え方を整理する必要がある。
- A25: 検討する。
- 5.4 今後のスケジュール案について 【資料 なし】 次回委員会の開催は6月16日を第一候補、23日を第二候補とし、事務局で調整後、 連絡することとした。
- 5.5 その他 なし

【資料 なし】

以上

金属製乾式キャスクバスケット用アルミニウム合金における 材料評価手法に関する確性試験(MAC)委員会

第3回委員会 議事要旨

- 1. 日 時 : 平成 28 年 6 月 23 日 (木) 13 : 30 ~ 17 : 00
- 2. 場 所 : (一財) 発電設備技術検査協会 EF 会議室
- 3. 出席者(順不同、敬称略)

委員	長	:	三枝(電力中央研究所)
委	員	:	哥山(宇都宮大学)、辻(東京電機大学)、丸山(東北大学)
			三浦(豊橋技術科学大学)、横山(岡山理科大学)
依頼	者	:	川原、石生、前口、山本、玉置(三菱重工)
事務	局	:	生藤、大石、長谷川(発電技検)

4. 配布資料:

MAC 3-1MAC 確性試験 第2回委員会 議事要旨案MAC 3-2**MAC 確性試験 コメント回答表MAC 3-2**コメント回答表に係る技術資料MAC 3-3基準強度設定に係る考え方MAC 3-3-1基準強度設定に係る技術資料 (MB-A3004)MAC 3-3-2基準強度設定に係る技術資料 (BC-A6N01)

- 5.議事:
 - 5.1 前回議事要旨案の承認 【資料 MAC 3-1】 資料に基づき、前回議事要旨案の説明が行われた。以下の質疑応答が行われるととも に、コメントを反映することで、前回議事要旨案は承認された。
 - [Q:質問 A:回答 C:コメント]
 - Q01: A14 について、>0.1MeV の中性子によって損傷することはないのか。
 - A01: >0.1MeV という条件は実炉の中性子エネルギースペクトルであるが、キャス クも同じ条件で考えている。損傷は水によって中性子が減速され≦0.1MeV になって吸収されやすくなった場合に影響が大きくなるが、キャスク内には 水は存在しないため、中性子は減速されずほとんど貫通する(一部弾性散乱 する)。さらに、中性子束も炉心に比べてかなり低いため損傷の程度は低い。
 - Q02: >0.1MeV という条件は中性子束とは関係しないのか。
 - A02: エネルギーと中性子束とは関係はない。>0.1MeVとは、高速中性子を区分す る際に一般的に用いられるエネルギーの目安である。
 - CO3: A18の「2.33o」は、正確には"平均値-2.33o"なので修正すること。
 - A03: 拝承。
 - 5.2 コメント回答表及び関連する技術事項の確認 【資料 MAC 3-2, 3-2-1~3-2-8】 資料に基づき、前回委員会でのコメントに対する回答と、それに関連する技術事項の 説明が行われた。以下の質疑応答及びコメントがあった。

無断複写·転載禁止

- [Q:質問 A:回答 C:コメント]
 - C04: 引張試験データ(図 C1-2)について、急激な伸びの変化が生じていないので、 200°C付近で中間温度脆化が生じていないことを補強するデータであると理 解した。
 - **Q05**: 応力ひずみ線図(図 C1-4)について、ひずみの小さい図と大きい図の 2 つ が示されている理由は何か。
 - A05: 試験片に伸び計を付けており、ひずみ量が2%までは伸び計で管理し、2%以降は試験機のストロークで管理している。
 - Q06: 伸び計による測定の方が信頼性はあるのか。
 - A06: ご指摘のとおりであると考えている。
 - Q07: 例えば、図 C1-4 で言えば、0.2%耐力は(1)の応力ひずみ線図で、引張強さは (2)の応力変位線図から求めたと考えてよいか(Q5 及び Q6 に関連)。
 - A07: ご指摘のとおりである。
 - C08: 図 C1-2 と図 C1-3 に関して、伸びと絞りの挙動が 3004 と A6N01 とで異な るのはなぜか。
 - A08: メカニズムを検討中である。
 - C09: ひずみ速度を途中で変更するという引張試験方法について、引用した JIS の 規格番号を記載すること。
 - A09: 拝承。
 - Q10: 本確性試験では、引張特性は JIS の規定に則って定めると考えてよいか。
 - A10: ご指摘のとおり、JIS に則って定める。
 - Q11: 図 C1-5 の応力ひずみ線図において、弾性域に見られるセレーションは伸び 計のノイズか。
 - A11: 弾性域でのセレーションは考えにくくしかも横軸方向の振幅なので、ノイズ であると考えている。
 - Q12: 表 3-3 の注 2)の「クリープ強度は低下させる」とは、"結晶粒の微細化がク リープ強度を低下させる"という意味か。
 - A12: ご指摘のとおりである。表現を修正する。
 - C13: 図 C3-1 には代替としてステンレス鋼のデータが掲げられているが、アルミ に関する結晶粒径と引張特性の論文は超塑性をキーワードに探せば見つか るかもしれない。また、軽金属分野であれば見つかる可能性がある。
 - A13: 拝承。
 - Q14: 照射の影響について報告されているが、アルミ材は原子炉のどの部分に使用 されているのか
 - A14: JRR-3の炉心支持構造物に使用されていると承知している。
 - C15: 照射量による影響が分かりにくいので、適切に表現すること。
 - A15: 照射量の評価の際、計算上、キャスクバスケット使用環境は 10¹⁵ n/cm² の低 い方の値であるが、それを丸めて 10¹⁶ n/cm² としている。照射量が 10¹⁷ n/cm² からボイドが形成され始めるが、強度特性に影響が現れるのは 10¹⁹ n/cm²程 度からである。そのような点を含めて、分かりやすい表現に見直す。
 - **Q16**: **SEM** 画像の2 値化の目的は何か。
 - A16: 組織に経年変化が生じないことを確認することが目的である。
 - Q17: A6N01 が長時間で強度低下するのは、析出物が減少することが理由か。
 - A17: 析出物が粗大化し、転位移動を阻害する作用が低下したことが理由である。 一方、3004 は、高温に長時間曝されると過飽和状態から平衡状態へ移る際 に合金元素が析出し固溶強化として期待される分が減少するが、それが強度

無断複写·転載禁止

変化として表れていると考えている。これを導電率で測定して調べている。

- 5.3 進捗状況及び試験結果等の審議 【資料 MAC 3-3, 3-3-1~3-3-3】 資料に基づき、基準強度設定に係る考え方とデータ処理の方法について、また、報 告書ドラフトに関する説明が行われた。以下の質疑応答及びコメントであった。
 - [Q:質問 A:回答 C:コメント]
 - Q18: 変動係数の定義は正しいものか。
 - A18: "室温における変動係数が高温にも適用できると仮定した方法で評価する" という説明を記載している。
 - Q19: 過時効材を使って室温の変動係数の妥当性を評価していると考えればよいのか。
 - A19: ご指摘のとおりである。
 - C20: Q19 の結果として、3004 の変動係数が 0.02~0.04 であることは、高温側への適用が妥当であると考えてよいか。温度依存性が A6N01 とは異なる。
 - A20: A6N01のSyを例とした場合、高温での変動係数より大きな値である室温の 変動係数を適用するので保守側の評価と考えているが、標準偏差のバラつき 幅を考慮した評価方法を再検討する。
 - C21: 高温の変動係数が室温の変動係数より大きい 3004 の場合、強度が下がって バラつきが大きくなることを意味するため非保守側となる。バラつきを補償 するような方法を検討すべきではないか。
 - A21: 検討する。
 - C22: 分散分析により、各温度における信頼性を見る方法がある。
 - A22: 検討する。
 - Q23: 統計処理において正規分布になることが前提のようだが、ヒストグラムは確認しているか。
 - A23: 確認している。やや正規分布からずれる傾向のものもある。
 - Q24: 念のための確認だが、有効数字の丸め方が異なる、あるいはロードセルが異 なるといった違いはないか。
 - A24: 有効数字については、小数点以下を四捨五入している。また、ロードセルは 同じものを使用している。
 - C25: 最もバラついた変動係数で評価した場合にどのような結果になるのか検討 すべきではないか。
 - A25: 検討する。
 - C26: 例えば、69 点のデータから 10 点を選ぶサンプリングを繰り返して変動係数 のバラつきを検討する方法も1つである。
 - A26: 検討する。
 - Q27: 69 点で評価した変動係数は確認しているか。
 - A27: 確認している。報告書ドラフトに記載している[資料 3-3-3, 6-71 ページ,表 28~29]。
 - C28: 平均値で規格化した際、分散が温度に依存しないという前提で 69 点を比較 すれば、バラつきの範囲に収まるかもしれない。
 - A28: 検討する。
 - C29: 正規確率分布の計算をいくつか行ってはどうか。
 - A29: 検討する。
 - Q30: 過時効の熱処理条件別の統計評価なのか。異なる熱処理時間のデータが混在 しているなど、バラつきには統計以外の要素が含まれていると考える。

- A30: 熱処理条件別ではない。
- Q31: 焼なまし材のデータはないのか。
- A31: 室温(23°C)のデータがあるので、比較できるように参考として提示する。
- Q32: 許容引張応力等の数字の丸め方は小数点以下切り捨てでよいか。JIS に従わ なくてよいか。
- A32: 安全側に考え、切り捨てとする。設計ギリギリの条件で使用するわけではないので、切り捨て処理でも問題ない。
- C33: "Unknown"な部分が多く、損傷時のひずみ速度も不明であることから、 引張強さに関する許容引張応力 S 値の係数について、1/3.5 に加えて 1/4 を 併記してはどうか。
- A33: 検討する。ただし、基本的には JSME を踏襲する考えであり、供用中はほぼ クリープ領域であるので、クリープ支配の許容引張応力値で設計されること を考えると、あまり有意ではないと考える。
- Q34: 破壊靭性試験の位置づけは何か。
- A34: 破壊靭性試験は、き裂がある場合の破壊抵抗を検討するための試験である。
- C35: 図 75 は最適のフィッティングなのか。高応力側と低応力側がフィットして いないように見えるので確認すること[資料 3-3-3, 6-87 ページ]。
- A35: 最適フィッティングであるが現状では全データが出揃っていないので、全デ ータが揃った上でフィッティングを確定したい。
- Q36: 表 41 及び表 42 において、 J_Q 及び K_{IQ} とあるが、なぜ Q がついているのか。
- A36: Invalid な値なので、Q とした。
- Q37: 図 102 の紙面の上下方向(き裂の進展方向)に現れている、細い線状の組織 は何か[資料 3-3-3, 6-114 ページ]。
- A37: 現状不明である。破面を確認する。
- Q38: 表 11 の引張試験の値は、どのような値が入るのか。(1/3.5)×Su や(1/1.5)×Sy の値が入るのか[資料 3-3-3, 添付資料 1-7 ページ]
- A38: 購入時の受け入れ基準の値を記載する。強度面と伸びのバランスを考えて値 を決定する。SuやSy値が入るのではなく、初期材の値である。キャスクの 設計には熱処理材の値を使用する。
- C39: 本確性試験では熱処理が重要なファクターなので、報告書の熱処理に該当す る箇所に、長時間熱時効を行う理由を追記すること。
- A39: 拝承。
- C40: 評価のベースとなる「異常粒成長のない組織」や「熱間押出し組織」等が分かるようにすること。
- A40: 拝承。
- Q41: 「熱伝導率」と「熱拡散率」は別のパラメータか。
- A41: 別のパラメータである。直接測定するのは熱拡散率であり、それを使って熱 伝導率を求める。
- Q42: 「ホウ素添加アルミ材」とは正確な用語なのか。実際は B₄C が添加されているので定義が必要である。
- A42: 業界では一般用語として用いられているが、記載を見直す。
- なお、以下に報告書ドラフトの誤記や編集上の修正等に関するコメントを列記する。
 - ・ 「作成」→「作製」とすること。
 - ・ 全章を通じて図表番号の記載を統一すること。
 - 表 2~9の引張試験結果の温度欄に単位を記載すること[6-6~6-18ページ]。
 - マイナスを表す「-」が分かりにくい。

- 「N 数」→「試験片数」とすること。
- ・ 「縦弾性係数」と「弾性率」が混在しているので記載を統一すべき。
- ・ 「Step 2」の記載が分かりにくい[6-33 ページ]。
- ・ 単位に使われる、半角「/」に違和感がある。
- 同じ用語で「係数」と「定数」が使われる箇所は統一すべき。
- ・ 「Step 2」の検討を行う上で、状態図を入れることが望ましい[6-33 ページ]。
- ・ 「表層」とは具体的にどの程度か示すこと。
- ・ 「冷却速度」→「冷却方法」とすること。
- ・ 試験片符号を統一すること。
- ・ 1/2T か 1/(2T)かが分かりにくい。
- ・ 冷却速度を表す「空冷」が「AC」であることを示すこと。
- ・ 導電率のグラフの「IACS」が何を示すか明記すること。
- 表 39 及び表 40 は計算手順が分かる記載し、「*」等の記号の意味が分かる ようにすること[6-94~6-95]。
- 図 79 及び図 80 について、「KJ/m²」→「kJ/m²」とすること。また、無次元 を示す「-」を分かりやすくすること[6-33 ページ]。
- ・ 表2の注記2「粒径」→「粒子径」とすること[添付資料2-4ページ]。
- 「2. 照射影響の要約」について、表現を見直すこと[参考資料 1-1 ページ]。
- 5.4 今後のスケジュール案について 次回委員会は8月30日に開催することとした。
- 5.5 その他 なし

【資料 なし】

【資料 なし】

以上

金属製乾式キャスクバスケット用アルミニウム合金における 材料評価手法に関する確性試験(MAC)委員会

第4回委員会 議事要旨

- 1. 日 時 : 平成 28 年 8 月 30 日 (火) 13 : 30 ~ 17 : 00
- 2. 場 所 : (一財) 発電設備技術検査協会 EF 会議室
- 3. 出席者(順不同、敬称略)

委員長	रै :	三枝(電力中央研究所)
委員	₹:	高山(宇都宮大学)、辻(東京電機大学)、丸山(東北大学)
		三浦(豊橋技術科学大学)、横山(岡山理科大学)
依頼者	₩:	川原、石生、前口、玉置(三菱重工)
事務履	司:	大石、永野、長谷川(発電技検)

4. 配布資料:

MAC 4·2^{**} MAC 4·3·1 MAC 4·3·2 MAC 4·3·2 MAC 4·3·2 MAC 確性試験 報告書コメント回答表 MAC 4·3·2 MAC 確性試験 報告書コメント回答表 MAC 確性試験 第3回委員会 議事要旨案 資料番号なし* MAC 第4回委員会の事前説明に関する情報共有メモ ※資料番号"#4 MAC 参考"については同じ資料のため、差し替えることの説明があった。

- 5. 議事:
 - 5.1 前回議事要旨案の承認 【資料 MAC 4-1】 資料に基づき、前回議事要旨案が説明されるとともに、以下の質疑応答が行われた。

[Q:質問 A:回答 C:コメント]

- Q01: Q30 について熱処理条件別に統計評価していないとのことだったが、この点 の評価は変わっていないか。
- A01: 熱処理温度と熱処理時間をそれぞれ別のファクターとしてデータを統計処 理し直し、報告書に反映した。

上記の質疑応答を踏まえ、回答 A05 に記載されている「ロードセル」を"ストローク" に修正することで前回議事要旨案は承認された。

- 5.2 コメント回答表及び関連する技術事項の確認 資料に基づき、前回委員会でのコメントに対する回答と、それに関連する技術事項の 説明が行われた。以下の質疑応答及びコメントがあった。
 - [Q:質問 A:回答 C:コメント]
 - C02: 24 ページの No.15 について、結晶粒と引張特性の関係の文献は、例えば、 K.HigashiやT.H.Langdon のものがあり、1990~2005 年頃に発表されてい ると記憶している。
 - A02: 再度、文献調査を行う。
 - CO3: 62ページの表1について、3段目の「σ」は不要なので削除すること。

無断複写

・転載禁止

【資料 MAC 4-2】

A03: 拝承。

- Q04: 69ページの表1では安全率3.5と4の許容応力を併記しているが、引張支配 かクリープ支配かの境界は安全率によって変わってくるのではないか。また、許容応力を併記した場合にどのように使われるのか。
- A04: 許容応力について、引張支配かクリープ支配かの境界は 125℃~150℃と考 えており、併記しても実用上は問題ないと考えている。安全率4の許容応力 は参考値として記載している。
- Q05: 許容応力の値が独り歩きすることはないか。
- A05: 許容応力が複数あると、どの数値を使えばよいか分からなくなるので、規定 書では安全率 3.5 の値のみ記載している。表1については、追記して誤解を 与えない表現に見直す。
- Q06: 74 ページでは、高温での 60 年間使用を模擬して長時間の熱処理を行っていると説明しているが、LMP を使用しなかったのか。
- A06: 対象となる Al 合金に対して、LMP が適用できるのか未確認のため、使用し なかった。その代わりに、組織変化や機械的性質の変化が停滞することを指 標とした。
- C07a: 74ページにある「停滞」という表現に違和感がある。
- C07b: 「停滞」には2種類あると認識している。一つは時効直後に機械的性質の変 化が一時的に見られなくなる場合と、長時間時効後に変化がなくなる場合で ある。「停滞」というとこれからさらに変化することを予見させるような表 現なので、例えば"飽和"といった表現の方がよい。
- A07: 当初は、組織変化を念頭に検討していたため"平衡"と表現していたが、冶 金的に平衡状態を確認したわけではないので、「停滞」と表現した。この表 現について再度見直す。
- C08: 図1と図2(76~77ページ)について、方位差5°と15°のカラーマッピ ングが極点図と合っていないことが分かるようにすること。また、「半径」 は"直径"又は"粒径"に修正すること。
- A08: 拝承。
- C09: 図1と図2(76~77ページ)について、小角粒界の結晶粒を無視しても転位 に対する粒界強化が成り立つかどうかという点で、方位差5°は、サブバウ ンダリーを含めた評価をするために実施したものと認識していたが、実際に 方位差5°と15°をどのような考えの下に選定したか説明が見当たらないの で、説明を追記すること。
- A09: EBSD 測定の目的は、方位差によって結晶粒を識別し、その結晶粒の体積が 長時間時効によって変化しないことを確認することである。その点を踏まえ て説明を追記する。
- Q10: 方位と結晶粒径は比例するのか。
- A10: 方位差15°を基準とするとやや大きめの傾向にある。
- 5.3 進捗状況及び試験結果等の審議 【資料 MAC 4-3-1, 4-3-2, 番号なし】 資料に基づき、報告書案に関する説明が行われた。以下の質疑応答及びコメントが あった。
 - [Q:質問 A:回答 C:コメント]
 - 【MAC 4-3-1】
 - Q11: コメント No.001 の弾性定数に関する用語について、機械分野で用いられる ものと材料分野で用いられるものとが混在しているが、いずれかの分野の用

無断複写·転載禁止

語に統一しなくてよいか確認したい。

- A11: 日本機械学会で用いられている呼称に合わせており、現状のままとしたい。
- Q12: コメント No.002 について、本確性試験では、いわゆるチャージ数は3か。
- A12: 3又はそれ以上である。

[MAC 4-3-2]

- C13: 図 22 (5-6 ページ)では最大 2 万 hr となっているが、6-1 ページの本文中では 10000 hr と記載されており時間が異なるので、整合を図ること。
- A13: 拝承。
- Q14: 表 36 (6-90 ページ) にある拡散距離の比とは、組織がより平衡状態に近い という意味か。
- A14: ご指摘のとおりである。
- C15: 図 65 及び図 66 (6-35~36 ページ)の EBSD の結果にスケールバーを入れる こと。
- A15: 拝承。
- C16: 表 50(6-131 ページ)に「最小」とあるが、どこかにこの定義に関する記載 があった方がよい。
- A16: 拝承。
- C17: 例えば、図 167 (6-165 ページ) にある破面の筋模様が試験片破断時のクリ ップゲージによる衝突痕であれば、そのことを報告書本文に記載すること。
- A17: 拝承。
- C18: 以下の点を念頭に報告書をまとめてほしい。
 - ① 6-2ページについて、10²~10⁴ hr で引張特性の下がり方が緩やかになり、 10⁴ hr 以降は特性に変化がないというまとめ方になっている。その意味では、10⁴ hr で変化が飽和したかしていないかでロジックが異なると考えるが、現状は定性的な表現なので、多少、定量的な説明が必要かもしれない。
 - ② 例えば表 47~49(6・127~129ページ)の BC・A6N01 を例にすると、ク リープ試験応力が 17.5MPa までしかないので、これ以降を外挿してクリ ープ強度を求めることは危険かもしれない。この場合、外挿しないという ことになると、275℃や 300℃といった高温側のクリープ強度は求められ ないことになる。
 - ③表 56(6-145ページ)では、クリープに基づいて得られる値は 150℃までしか記載がないが、低温側に外挿すると、例えば 125℃では Sr や Sy から得られる値よりクリープから得られる値の方が低く、不連続になると考えられる。外挿の是非はあるが、クリープから得られる値を計算せずに Sr や Sy を基に許容引張応力を算出することに、やや疑問が残る。
 - ④ トレンドカーブについて、350℃あたりで急激にカーブが下がる箇所の山の高いところを値として設定してよいかどうか。
 - ⑤ 6-125ページ下から3行目に10⁻⁷⁰%/hrと記載があるが、現実的には意味がない値なので記載不要ではないか。
- A18: 拝承。外挿に対する考え方については他の材料も踏まえて再検討し、各委員 に検討結果を確認いただくようにする。

【番号なし】

- Q19: #4-01 について、"照射によってボイドができた場合に拡散速度が変わるか" といった観点からの質疑応答と考えてよいか。
- A19: LMP の代わりに拡散速度の観点から説明できないかという観点での質疑応

答である。

- C20: #4-07 について、表現に違和感がある。誤解のない表現が望ましい。
- A20: 330~340℃は短時間で確実に回復するとされる温度であるが、本確性試験では 200℃の過時効条件でも問題ないことを確認している。報告書は誤解のないよう記載する。
- C21: #4-09 について、過去に溶接構造の SUS 製バスケットが破損したことがあ る。本確性試験のバスケットは同様の破損が生じないことを明確にするた め、菓子折り構造で熱応力を逃がす設計になっていることを追記して説明し た方がよい。
- A21: 拝承。
- C22: #4-10 について固有振動数を報告書本文にも記載した方がよい。
- A22: 拝承。
- C23: #4-12 について、例えば 0.57%Fe で Mn の固溶量が 0.5wt%になった結果、 強度が低下するとすれば Mn の化学成分の下限値を定める必要はないか。
- A23: Fe は Mn 析出物を形成する際の核になり、母相中に溶け込む Mn 量と Mn 析出物量をコントロールできる。Fe 添加によって析出速度は上がり、比較的 短時間で平衡固溶量に達するが、ここでの説明は Fe の効果を強調するため ではなく、組織が平衡状態に達する時間の観点で検討したことを示すもので あるため、この点の説明を追記する。
- C24: #4-29 について、福島第一で使用中のキャスクのように横置きで保管するものもあるので、横置きに関する考え方は排除しない方がよい。
- A24: 拝承。
- C25: #4-32 について、「北極、南極」の記載は削除すること。
- A25: 拝承。
- C26: #4-34 の趣旨は、対数軸上での正規分布の中心が線の中心にはないため、対 数軸プロットに対して中央に傾向線を引くべきではないというということ である。それぞれが違う尺度で議論していることを意識したまとめ方にして ほしい。
- A26: 拝承。
- Q27: #4-34 について、ポアソン比は設計において重要な影響を及ぼすのか。
- A27: 重要な影響を及ぼすファクターではない。

審議の結果、質疑応答及びコメントの内容を反映することで、報告書案は承認された。

- 5.4 今後のスケジュール案について 第4回委員会をもって、会合型の審議は終了することとした。
- 5.5 その他

【資料 なし】

【資料

なし

- ・会合型の審議の終了に伴い、第4回委員会の議事要旨案及びコメント回答表についてはメール審議とすることした。
- 報告書序文については委員長に一任することとした。
- ・報告書等に対するコメントは9月16日(金)を目途に、事務局へ連絡することとした。なお、報告書体裁や誤記修正等、技術的内容以外の最終的な編集上の修正については依頼者及び事務局において行うこととした。

金属製乾式キャスクバスケット用アルミニウム合金における 材料評価手法に関する確性試験(MAC)委員会審議資料

No.	コ メ ン ト 等	コメント等に対する回答	備	考
1	ひずみ速度によって強度が変わってくるのではないか。本件につ いては改めて議論して欲しい。	 ひずみ速度依存性を確認し、ひずみ速度が速くなるにつれ強度特性が 上がる特性を確認した。 ・ 最も過酷な衝撃荷重である 9m 落下時のひずみ速度は、10^o[s⁻¹] オーダであり、試験条件のひずみ速度による試験値は保守性を有 する。 ・ 低速側ではクリープ試験により得られた値を基に設定する S 値 にて設計基準値を定めており保守性を有する。 		
2	ビレットの均質化がノウハウと思われるため、供試材で得られた 材料特性がその押出し材の全体を代表する、あるいは代表サンプ ルを用いることで全体の材料特性を説明できるとする論理構築を しておいた方が望ましい。例えば、押出しの初期と終端からも供 試体を採取することも考えてはどうか。	角管押出材(N チャージと同一仕様の別ロット材)を用いて、押出初 期、中期、終期での引張特性確認を実施している。 その結果、サンプリング位置に有意差は無く、供試材の代表性に問題 ないものと判断している。		
3	報告書表 7 にある、結晶粒微細化は室温において強化機構として 働くことは理解できるが、200℃はアルミ合金にとってはクリープ 領域であり逆に強度は下がるので、強化機構の説明として違和感 がある。また、200℃は照射によってボイドクラスターができやす いため、状態図による説明のみでは不足ではないかと感じる。原 研(現原子力機構)で材料試験炉の放射線下で引張試験を行った データがあったと記憶しており、参考にしてはどうか。	 結晶粒微細化について 報告書表7に「室温における強化機構」と注記し、「クリープ領域 (高温領域)では静的強度の強化機構としての寄与は小さく、クリ ープ強度は低下させる」ことを追記する。 照射影響について キャスクにおける照射環境は60年間の累積照射量が10¹⁶ n/cm²で あり、文献調査及び中性子照射試験実績からキャスク供用期間中に 有意な影響は無いものと判断した。 		

確性委員会技術コメント及び回答リスト

No.	コ メ ン ト 等	コメント等に対する回答	備考
4	照射による引張強さや0.2%耐力が上昇するという、ボイドハード ニングという現象があること知見として提供する。	拝承。 検討に反映し、影響確認結果を No.3 に示す。	
5	報告書図 42~図 47、図 51~図 56 について、0h~1000h の間の 線をつなげると誤解を与えるおそれがあるので、線の引き方を見 直すことが望ましい。	拝承。 報告書に反映した。	
6	伸びや絞りに差が出ている原因について把握しているか。	伸び、絞りの差について、BC-A6N01 は長時間過時効熱処理と完全 焼なまし処理により、Mg2Si の析出物サイズが異なることを確認し た。よって、当該 Mg2Si 分を起点に破断が生じ易くなったため、長 時間過時効熱処理材に比べ完全焼なまし処理材の伸びが低下した原 因と考えられる。	
7	引張試験データに試験時のひずみ速度を記載した方がよい。また、 ひずみ速度が遅くても強度的に問題はないことを示すデータがあ ることが望ましい。	No.1 に示す。	
8	アルミニウム合金は 200°C 近辺で中間温度脆化が起こるとの報告 も有り、その中間温度脆化はひずみ速度に強く依存することが知 られている。おそらく両アルミニウム合金は、添加物量が高く中 間温度脆化域が 200°C より高い可能性があるが、200°C 近近の引 張挙動のひずみ速度依存性を調べ、後世に禍根を残さない様に安 心できるデータを提示してほしい。	No.1 に示す。	
9	修正の際、引張試験におけるひずみ速度も記載すること。	拝承。 各資料に記載する。	

No.	コ メ ン ト 等	コメント等に対する回答	備	考
10	導電率測定を実施した試験片に対してバフ研磨及びエッチングを 施し、SEMの画像を2値化して観察すれば析出物が観察できるの で、実施してはどうか。できれば時間軸に対応したデータを示し てほしい。	様々な手法を用いて観察したが2値化による分析ができるほど明瞭 な観察像を得られなかった。		
11	統計処理におけるデータ数について、現状では o 自体の信頼性が 損なわれている状態での議論となっていないか。データ数が少な い場合の評価の信頼性を担保する根拠や考え方を整理する必要が ある。	ご指摘内容を反映し、以下のとおりとする。 試験点数が少ない完全焼なまし処理材を常温の引張試験点数を増加 させ信頼性を確保する。 MB·A3004:各試料2点(常温) ⇒ 23点(常温) 総数 69点(常温) BC·A6N01:各試料2点(常温) ⇒ 14点(常温) 総数 28点(常温) 上記の追加点数から常温の99%包絡下限値を算出し、常温の基準値を 定める。 常温の基準値に対して、各温度の試験値との比を算出し、その下限を とおる包絡下限線を算出する。常温の基準値に包絡下限線を掛けるこ とで各温度の基準値を定める方法とする。		
12	「2.33o」は、正確には"平均値-2.33o"なので修正すること。	拝承。 反映した。		
13	No.1の資料に関して、伸びと絞りの挙動が 3004 と A6N01 とで異なるのはなぜか。	No.1 に示す。 材料のバラつきの範囲と考えられる。		

No.	コ メ ン ト 等	コメント等に対する回答	備	考
14	ひずみ速度を途中で変更するという引張試験方法について、引用 した JIS の規格番号を記載すること。	No.1 に示す。 JIS G0567 を追記した。		
15	No.3 回答資料には代替としてステンレス鋼のデータが掲げられて いるが、アルミに関する結晶粒径と引張特性の論文は超塑性をキ ーワードに探せば見つかるかもしれない。また、軽金属分野であ れば見つかる可能性がある。	No.3,4 に示す。 アルミニウムの耐力の結晶粒径依存を示す文献データに置き換えた。		
16	照射量による影響が分かりにくいので、適切に表現すること。	No.3,4 に示す。 表現を適正化した。		
17	A3004 の変動係数が 0.02~0.04 であることは、高温側への適用が 妥当であると考えてよいか。温度依存性が A6N01 とは異なる。	300℃の試験を追加し、常温の変動係数との比較を行った結果、同等 性を確認した。よって、常温の標準偏差を高温側へ適用することに問 題ないと判断した。		
18	高温の変動係数が室温の変動係数より大きい 3004 の場合、強度が 下がってバラつきが大きくなることを意味するため非保守側とな る。バラつきを補償するような方法を検討すべきではないか。	No.17 に示す。		
19	分散分析により、各温度における信頼性を見る方法がある。	No.17 に示す。		
20	最もバラついた変動係数で評価した場合にどのような結果になる のか検討すべきではないか。	No.17 に示す。		

No.	コ メ ン ト 等	コメント等に対する回答	備	考
2 1	例えば、69 点のデータから 10 点を選ぶサンプリングを繰り返し て変動係数のバラつきを検討する方法も1つである。	No.17 に示す。		
2 2	平均値で規格化した際、分散が温度に依存しないという前提で 69 点を比較すれば、バラつきの範囲に収まるかもしれない。	No.17 に示す。		
23	正規確率分布の計算をいくつか行ってはどうか。	計算してカイ二乗検定による適合性の評価も実施しました。		
2 4	Unknown"な部分が多く、損傷時のひずみ速度も不明であることか ら、引張強さに関する許容引張応力 S 値の係数について、1/3.5 に加えて 1/4 を併記してはどうか。	係数 1/4 の場合の算出結果を示し、1/3.5 との比較を追加いたしました。		
2 5	報告書図 75 は最適のフィッティングなのか。高応力側と低応力側 がフィットしていないように見えるので確認すること。	クリープ試験のデータに最新状況を反映させ、フィッティングを実施 して適正化した。近似線が高 LMP でデータより下方寄り、低 LMP で上方寄りであった傾向は改善された。これを報告書へ反映した。		
26	本確性試験では熱処理が重要なファクターなので、報告書の熱処 理に該当する箇所に、長時間熱時効を行う理由を追記すること。	長時間時効の条件決定で考慮すべきことを整理し、それを各材料に適 用した結果を報告書 3.1.2 に詳述した。		
27	評価のベースとなる「異常粒成長のない組織」や「熱間押出し組 織」等が分かるようにすること。	EBSD による組織評価結果を掲載した。		
確性試験報告書案に対するコメント及び回答リスト(非番号管理)

コ メ ン ト 等	コメント等に対する回答	備考
【資料 MAC 4-2】24 ページの No.15 について、結晶粒と引張特性の関係の文献は、例えば、K.Higashi やT.H.Langdon のものがあ	アルミニウムの耐力の結晶粒径依存を示す文献データに置き換えた。	
り、1990~2005 年頃に発表されていると記憶している。		
【資料 MAC 4-2】62 ページの表1について、3 段目の「σ」は不	拝承。	
要なので削除すること。	報告書本文 (P6-119,P6-120) にも反映しました。	
【資料 MAC 4-2】74 ページにある「停滞」という表現に違和感が	停滞という表現がある、本文の 3.1.2(1)、5.1(1)は、より正確に「時	
ある。	効に伴う機械的性質の変化速度が減少することが確認でき、ゼロとみなせ	
	る程度となるまでの長時間であること。」としました。	
【資料 MAC 4-2】「停滞」には2 種類あると認識している。一つは	同上	
時効直後に機械的性質の変化が一時的に見られなくなる場合と、		
長時間時効後に変化がなくなる場合である。「停滞」というとこれ		
からさらに変化することを予見させるような表現なので、例えば		
"飽和"といった表現の方がよい。		
【資料 MAC 4-2】図 1 と図 2(76~77 ページ)について、方位差	拝承。	
5°と 15°のカラーマッピングが極点図と合っていないことが分か	なお、カラーマッピングについて、次の文言を追記し明確化を図りました。	
るようにすること。また、「半径」は"直径"又は"粒径"に修正する	「方位分布図以外では色は方位を示しておらず、異なる結晶粒と識別した	
こと。	領域が同色とならないように決めている。」	

コメント等	コメント等に対する回答	備	考
【資料 MAC 4-2】図 1 と図 2(76~77 ページ)について、小角粒	拝承。		
界の結晶粒を無視しても転位に対する粒界強化が成り立つかどう	次の文章を追記し、明確化しました。		
かという点で、方位差 5°は、サブバウンダリーを含めた評価をす	(報告書本文 (P6-34) も同様)		
るために実施したものと認識していたが、実際に方位差 5°と 15°	「長時間時効による引張特性の変化を組織の観点から考察するために傾角		
をどのような考えの下に選定したか説明が見当たらないので、説	粒界を評価することとし、そのために方位差15°で結晶粒を識別することと		
明を追記すること。	した。参考として方位差 5°でも併せて評価した。」		
【MAC 4-3-2】図 22(5-6 ページ)では最大 2 万 hr となっている	長時間時効処理で最大2万hr実施し、強度評価は1万hrまでの処理材で		
が、6-1ページの本文中では10000 hr と記載されており時間が異	決定し、クリープ試験は2万hrの材料も適用して評価していることから、		
なるので、整合を図ること。	このままの表記とさせて頂きたく。		
	なお、報告書本文にクリープ試験は2万hrの長時間時効材を使用している		
	旨を追記しました。		
【MAC 4-3-2】図 65 及び図 66(6-35~36 ページ)の EBSD の結	拝承。		
果にスケールバーを入れること。	スケールバーを追記しました。		

コメント等	コメント等に対する回答	備考
【MAC 4-3-2】表 50 (6-131 ページ) に「最小」とあるが、どこ かにこの定義に関する記載があった方がよい。	拝承。 報告書表の注記に次の文章を追記し明確化しました。	
	本表に関する注意 最小値は、試験データから推定される 95%信頼下限値(90%信頼区間の下限値)とした。 275℃以上においては 10⁵hr が破断した試験片が存在する LMP 範囲外となるため、275℃以上における 10⁵hr 破断強さの推定を行わなかった。 括弧内は試験温度範囲外への外挿であるが、6.3.4 で明らかとなるように、許容引張応力 S の評価で保守的な結果を与えることが分かっているため算定した。 	
【MAC 4-3-2】例えば、図 167 (6-165 ページ) にある破面の筋模 様が試験片破断時のクリップゲージによる衝突痕であれば、その	拝承。 委員会では、クリップゲージの打痕のない視野を撮影して掲載するとの意	
ことを報告書本文に記載すること。	見も頂きました。現状載せているものと同じ低倍率では、打痕が写り込ま ない視野は取れませんでしたが、この破面写真はディンプルの確認だけが 目的でしたので、ディンプルが観察できる高倍率の写真だけを掲載いたし ました。	

コメント等	コメント等に対する回答	備考
【MAC 4·3·2】以下の点を念頭に報告書をまとめてほしい。 ① 6·2 ページについて、10 ² ~10 ⁴ hr で引張特性の下がり方が緩や かになり、10 ⁴ hr 以降は特性に変化がないというまとめ方になっ ている。その意味では、10 ⁴ hr で変化が飽和したかしていないか でロジックが異なると考えるが、現状は定性的な表現なので、多 少、定量的な説明が必要かもしれない。 ② 例えば表 47~49(6·127~129ページ)の BC-A6N01を例にす ると、クリープ試験応力が 17.5MPa までしかないので、これ以降 を外挿してクリープ強度を求めることは危険かもしれない。この 場合、外挿しないということになると、275℃や 300℃といった高 温側のクリープ強度は求められないことになる。 ③ 表 56(6·145ページ)では、クリープに基づいて得られる値は 150℃までしか記載がないが、低温側に外挿すると、例えば 125℃ では ST や Sy から得られる値よりクリープから得られる値の方が 低く、不連続になると考えられる。外挿の是非はあるが、クリー プから得られる値を計算せずに ST や Sy を基に許容引張応力を算 出することに、やや疑問が残る。 ④ トレンドカーブについて、350℃あたりで急激にカーブが下が る箇所の山の高いところを値として設定してよいかどうか。 ⑤ 6·125ページ下から 3 行目に 10-70 % /hr と記載があるが、現 実的には意味がない値なので記載不要ではないか。	ご意見に対して以下の通り回答致します。 ① 個々の条件での飽和程度を定量的に表現することは困難でしたが、 C07a での表現「時効に伴う機械的性質の変化速度が減少することが確 認でき、ゼロとみなせる程度となるまでの長時間であること。」に対応 するように記載を見直しました。 ② 試験応力の範囲外への外挿は行わないように修正しました。 ③ クリープ破断強さを低温側へ外挿し、ご指摘の通り引張由来の値より低 い値となりましたので、それを採るように改訂しました。 ④ 材料規定値の評価算出に直接影響を及ぼさない範囲であることから、当 該範囲に山が出ないように、例えば多項式の係数を操作するような場 合、合理的な根拠付けが難しいことから算出法はこのままとさせて頂き ました。 ⑤ これらの記載は削除いたしました。	
【番号なし】#4·07 について、表現に違和感がある。誤解のない表現が望ましい。	拝承。 純金属ではないことから融点という用語は使えないため、これを固相線温度に置き換えるとともに、具体的な温度を示して説明しました。	

コメント等	コメント等に対する回答	備る	考
【番号なし】#4-09 について、過去に溶接構造の SUS 製バスケッ	拝承。		
トが破損したことがある。本確性試験のバスケットは同様の破損	次の回答文言に修正致します。		
が生じないことを明確にするため、菓子折り構造で熱応力を逃が	バスケットを溶接構造とはせず、菓子折り構造の組み合わせ部に適切な隙		
す設計になっていることを追記して説明した方がよい。	間を設けるガタ構造(拘束が生じない構造)にすることで意図的に熱応力		
	が発生しないような設計としているため、影響はないと考えている。		
【番号なし】#4-10について固有振動数を報告書本文にも記載した	拝承。		
方がよい。	本文 5.5.1 項に固有振動数を記載いたしました。		
【番号なし】#4-12 について、例えば 0.57%Fe で Mn の固溶量が	一般的に Fe の添加量に応じて Mn の過飽和固溶の程度(析出のし易さ)が		
0.5wt%になった結果、強度が低下するとすれば Mn の化学成分の	変化することが知られている。しかしながら、初期材では影響 (Mnの固溶		
下限値を定める必要はないか。	量と析出量バランスによる強度影響)を受けるものと理解しているが、長		
	時間の時効処理や完全焼なまし処理により平衡状態に材料を安定化させて		
	材料特性評価を行っているため、Feの影響は無視し得ると考えており、添		
	加量下限制限を設ける必要はないと判断している。		
【番号なし】#4-29 について、福島第一で使用中のキャスクのよう	拝承。		
に横置きで保管するものもあるので、横置きに関する考え方は排	次のとおり文言を修正し、本文にも反映しました。		
除しない方がよい。	輸送時や貯蔵までの所定期間横置き姿勢となること、及び横置き貯蔵の形		
	態もあることから横置き貯蔵姿勢を考慮すると、バスケットに係る荷重は		
	自重に加え燃料集合体重量が負荷され、横置き貯蔵時の発生応力は約3MPa		
	以下と小さいため横置き姿勢での貯蔵においてもクリープは無視し得る。		
【番号なし】#4-32 について、「北極、南極」の記載は削除するこ	拝承。		
と。	削除しました。		

コメント等	コメント等に対する回答	備考
【番号なし】#4-34の趣旨は、対数軸上での正規分布の中心が線の	・ 「対数軸上での正規分布の中央」が信頼区間の中央にはないとのご指摘は	
中心にはないため、対数軸プロットに対して中央に傾向線を引く	全くその通りですが、本検討のグラフは「対数軸上における対数正規分布	
べきではないというということである。それぞれが違う尺度で議	(見た目の形状は線形軸上の正規分布と同じ)の中央」に傾向線を引いてい	
論していることを意識したまとめ方にしてほしい。	るということに対応するため、グラフや記載はこのままとさせて頂ければ	
	と考えています。	
	(仮に対数を採らないクリープ破断強さの分布に正規分布を仮定し、それを対数軸	
	上で表示した場合、ご指摘の通り、分布のピーク位置は区間の中央とは一致しま	
	せん。しかし、今回の一連の検討においては、通常行われる通り、応力に対数を	
	とった値を正規分布として処理しています。これは、対数正規分布の確率密度曲	
	線を、横軸対数として表示したことになりますので、分布のピークの位置は、線	
	形軸と同様、区間の幅の中央に一致します。)	
60年後の拡散速度は計算しているのか。計算しているのであれば、	計算を行っているので、報告書に追記する。	
理論的裏付けを示すという意味で、記載した方がよい。	本内容を記載する小節を6.2.4として設けた。	
10 万時間のような長時間の時効材の析出物分布はどのようになっ	10万時間のデータはないが、1万時間及び2万時間の時効材のTEM写真があるの	
ているのか。以前の委員会にて、長時間時効後も析出物が強化機	で、それを基に強化機構の補足説明を追記する方向で検討する。	
構として働くかどうかに関連して質問があったと記憶している。	6.1節後半にデータの追加を行った。	
例えば 6-156 ページの図 160 の破面に見られる縦方向の筋模様に	拝承。	
ついて、試験片のペアを再度観察し凹凸があるがどうか確認して	左右非対称、かつ金属光沢が認められ、さらに大きな明らかに傷と分かる個所	
ほしい。この筋模様が内部欠陥でないことを確認したい。内部欠	も存在するため、破壊後に生じた傷と考えられる。しかし、倍率の都合上、こ	
陥ではないと確認できれば、筋模様のない写真の方がよい。	の傷が存在しない領域を同倍率で撮影することができなかった。もし議論を呼	
	ぶので好ましくないということであれば、傷が認められる低倍率のSEM写真を	
	削除したい。	
参考資料1-1及び1-2については、試験条件をより詳細に記載する	拝承。	
こと。特にひずみ速度や試験片の履歴は必要と考える。	実施条件をより詳しく記載した。	

コメント等	コメント等に対する回答	備考
参考資料 1-2 ページ(2)では 10 ¹⁶ n/cm ² の中性子照射量では影響は	安全側になるよう数字を丸めた結果、分かりにくい表現となった。ご指摘に従	
ないとあるが、一方で、1-6 ページでは「保守的な評価でも	ってまとめ方を見直す。	
1.4×10 ¹⁵ n/cm ² 」と記載されており分かりにくい。実際に影響の		
現れる照射量や60年間で想定されるバスケットの照射量を表にま		
とめてはどうか。		
シャルピー試験片はどのようにして温度を-40℃まで下げたの	アルコールにドライアイスを入れて-40±1℃にした状態で、即座に試験を行う	
<i>か</i> _°	方法を採用した。	
6N01 と A3004 の融点は同じか。また、組織の回復が生じる温度	6N01とA3004の固相線温度はそれぞれ652℃(925K)、654℃(927K)で同等です	
は融点の半分程度と考えてよいか。	(軽金属学会「アルミニウムの組織と性質」より)。	
	教科書的には、回復や再結晶は絶対温度で表した固相線温度の半分程度で起こ	
	ると説明されていると考えます。	
6-64 ページの TEM 写真にある、大きな塊は何か。	Al ₆ Mnの析出物である。大きな塊の方はAl ₆ Mnの特徴的な形状であるため、形	
	状が判別しにくい小さな形状のものを意図的に分析し、Al ₆ Mnであることを確	
	認した。	
6-150 ページの図を見ると 10kN のロードセルと 300kN のロード	固有振動数の違いと考えている。10kNの方の装置は自社所有の装置なので、固	
セルの特性の違いが現れているような波形に見える。これは固有	有振動数を確認する。	
振動数の違いなのか。	ロードセルの固有振動数を記載した(5.5.1)。	
「弾性定数」の定義について了解したが、JISの定義はどうなって	JISでは金属材料に対しては「ヤング率」と「剛性率」と呼称。ただしファイン	
いるか。	セラミックスやコンクリートを対象にした規格ではヤング率に対応するものを	
	「弾性係数」と呼ぶなど必ずしも呼称の統一が図られていなかった。	
	報告書での用語は「弾性定数」、Young's modulusは「縦弾性係数」、Shear	
	modulusは「せん断弾性係数」とし統一した.	

コメント等	コメント等に対する回答	備考
アルミ合金中の Fe の添加量はどの程度か。	概ね0.5~0.6wt%であり、図13(3-11ページ)のグラフの一番下のカーブに相当	
	する。Al中に固溶しないFeを添加することでAlMn析出物の核となり、Mnの析	
	出量をコントロールできる。Feを添加しないとMnの過飽和固溶し、AlMn析出	
	物が形成されない。	
6章の初めの部分(6-1~6-5ページ)で記載されている「通常条件」	拝承。	
という用語は分かりにくいので、定義を明記すること。	報告書に反映した。	
6-35 ページに「Step 2」の説明がなされているが、200℃とした根	状態図の観点から、説明を追記する。	
拠を記載した方がよいのではないか。	「200℃以下の温度域での過飽和固溶を無くすための冷却速度の検討」とあっ	
	たが、これは温度を制限するべき事項ではないと考えられたため「過飽和固溶	
	を排除するための冷却速度の検討」と改めた。	
6-40 ページに「Step 2'」とあるが、これは「Step 2」と区別して	「Step 2'」は焼き鈍し温度を下げた際の影響を確認するための条件であり、	
いると考えてよいか。	「Step 2」とは区別している。	
表 21(6-50ページ)の項目欄に「冷却速度」とあるが、実際の速	表24等の記載と整合させるため、意図的に「冷却速度」とした。	
度ではなく、「空冷」と記載されている。これは「冷却条件」の誤		
記ではないのか。		
図 71 (6-52 ページ)の「表層近傍」は「T-Z 面」に修正すること。	「T-Z面」についてはご指摘にしたがって修正する。また、「符号C」は"供試	
また、図 73(6-54 ページ)の「符号 C」の意味が分からない。	材C"の誤りであるため、修正する。	
	「T-Z面,表面付近」や「T-Z面,板厚中央」と修正。	
前回の委員会でコメントのあった、例えば、図 159 (6-159 ページ)	光沢面が確認されており、試験で使用したクリップケージが当たったことによ	
の破面に現れている筋模様の調査についてはどうなっているか。	る傷ではないかと考えている。当て傷であれば、試験片の破面どうしを合わせ	
	た際に凹凸はないと考えられるため、現在、破面を再確認中である。	
安全率を3.5一本にすることは理解したが、前回の委員会でコメン	その点については、委員会資料として配布している"コメント回答表"を報告書	
トのあった"3.5 と4を併記する"ことに対する回答になっていない	に添付し、その中で回答するようにしたい。	
のではないか。		

コメント等	コメント等に対する回答	備考
3-7ページからの熱処理方法の記載について、例えば、アレニウス	そのような評価を行っている文献があると記憶している。ご指摘に従って、拡	
則の観点から、長時間熱処理の影響を評価しないのか。	散速度の観点から記載を加えることを検討する。	
試験温度の誤差範囲は記載しないのか。	現状では記載していない。引張試験は試験片で温度管理しているが、電気炉を	
	用いた試験については、試験片の温度測定を行っているが、装置の設定温度で	
	管理することを基本としている。試験温度の誤差範囲も追記する方向で見直す。	
	5.1と5.2に記載した。室温の試験ではJISZ2241に定める23℃±5℃の要求を、	
	高温試験ではJISG 0567に定める設定温度との相違が3℃以下、試験片内の温	
	度差が3℃以下の条件を満足するように雰囲気を制御し実施した。	
図 132 (6-132 ページ) のクリープ強度について、3004 は直線的	3004は熱時効の影響が少ないと考えられる。一方、6N01は長時間熱時効によ	
に変化しているがその理由は何か。	ってMg2Siが粗大化しやすく強度変化が現れたため、S字カーブの傾向を示した	
	と考えられる。	
例えば、シャルピー試験における衝撃値について、試験片採取方	拝承。	
向の異方性の影響は少ないことは理解したが、採取方向で衝撃値	報告書に反映した。	
がどの程度変わるのか記載した方がよい。		
キャスク設計の際に物性値データは使用するのか。	除熱を考慮する必要があるため、熱関係の物性値データは使用する。	
熱関係の物性値データに異方性はあるのか。	評価に影響を及ぼさない程度の異方性は存在する。異方性に関する記載を追記	
	する。	
	6.4の説明文に記載した。	
「肉厚」という表現を用いるのか。JIS の圧力容器関連規格では、	従来は"板厚"を使用していたが、本材料は圧延材ではなく厳密には"板厚"ではな	
"厚さ"という表現に統一する動きがある。	いことから、"肉厚"と表現した。ご指摘に従って表現を再検討する。	
	報告書は、すべて"板厚"とした。	
シャルピー試験の横膨出量のデータは使用するのか。	実際に使用することはない。鉄鋼系材料における規定の考え方を踏襲し、デー	
	タとして載せることとした。	
応力の単位は"MPa"でよいか。	これまで"MPa"で統一しており、このままとしたい。JSME規格もMPaで記載	
	しているので、その点を考慮した。	

コメント等	コメント等に対する回答	備考
キャスクを横置きで保管することはあるのか。	例えば、仮置きで1週間程度横置き状態で保管する場合がある。実際の負荷は 3MPa程度で、クリープ状態でも影響はないと考えている。 実際の使用状態を考慮し、横置き貯蔵を排除しないものとし、報告書に反映し ました。	
図 9 (3-5 ページ)の EBSP マッピングに「10 degree tolerance」 とある。一般的には 15°だと認識しているが、測定は 10°のみか。	EBSPは5°、10°、15°の3角度で測定し、組織の見え方に違いがないことを確認 した。いずれも見え方に違いはないので、代表として10°のマッピングを示した。	
クリープでは小角粒界が動きやすく、その意味では10°のマッピン グは経年変化を生じやすい粒界を見せていることになる。一方、 見え方に違いがないことを示したいのであれば、15°の結果を示す 方がよい。EBSP の結果を示す目的が、いわゆる亜粒界の影響を 含んだ評価をしたいのか、あるいは組織変化をのみを評価したい のか曖昧なので、明確にすることが望ましい。	記載内容を検討する。 時効による引張特性の変化を組織の点で考察することを念頭に置いているの で、大傾角粒界を評価し、方位差15°とした。方位差5°も併せて結果を掲載した。 $\int_{\text{Tybe Habbase}}^{\text{Signer blerace}}$ $\int_{\text{Tybe Habbase}}^{\text{Signer blerace}}$ $\int_{\text{Tybe Habbase}}^{\text{Signer blerace}}$ $\int_{\text{Tybe Habbase}}^{\text{Signer blerace}}$ $\int_{\text{Tybe Habbase}}^{\text{Tybe Habbase}}$	
最近では EBSP を"EBSD"に統一されていると記憶している。表記 はいずれかに統一すること。また、図 9 のカラーが方位と対応し ているかどうか分かるようにすること。	拝承。	
シャルピー試験は-40℃で実施しているが、これは一般的なのか。 また、試験温度は材料に依るのか。	キャスクの世界では、IAEAの基準で-40℃で評価することが指定されている のでこれに従った。また、試験温度は材料に依らず、全て-40℃で実施するこ とになっている。	
本報告書全体において、単位表記に取り決めはあるのか。	JISの単位表記を基本とし、他はJSMEの金属キャスク構造規格に合わせる形を 取っている。	

コメント等	コメント等に対する回答	備考
引張試験結果は縦軸を線形軸としているが、LMPによるクリープ 試験結果の評価では縦軸を対数軸としている。この違いが変動係 数の考え方に影響を及ぼすことはないと思うが、そのことを補強 する記載を追記することが望ましい。	拝承。 クリープ試験結果については、変動係数の考慮を行っていない。	
ポアソン比が 0.4 というのは、大きい印象である。どのように求め たのか。	共振法を用い、等方材料であるという仮定の下で算出された値であるが、詳細 は把握していないので確認する。 算出法は5章に記載の通り。等方性材料の仮定を用いているので、弾性定数に異 方性があれば計算値が影響を受ける。なお、一般的にアルミニウムのポアソン 比は0.34程度である。	
	出典 日本機械学会 金属材料の弾性定数 (1980)	
中性子照射の試験時間が15hrとあるが、その根拠は何か。	キャスクの60年間の全照射量が10 ¹⁶ n/cm ² であり、この照射量になるように照 射時間を計算した結果、15hrとなった。	
拡散係数について、大まかに言うと 200℃と 250℃では 100 倍程 度違うだろう。材料を 200℃で使用するということは、250℃で時 効したとするとどの程度の時効時間に相当するのか。	1万時間程度である。拡散係数については計算しており、例えば、200℃で53万時間の係数を1とすると300℃では係数は数倍になり、安全側であることを確認している。	

コメント等	コメント等に対する回答	備考
キャスク設計に当たって設計降伏点 Sy が最も重要だということ	ご指摘のとおりである。60年後であっても200℃で保管されていることを前提	
は、60 年後でも Sy を超えることがないように設計するというこ	とした9m落下事象を想定し、それによってSyを超えることのないよう設計する	
とか。	ことになる。	
キャスクの輸送と保管で許容値に対する設計の考え方が異なる点	設計上の基準値として、静置モードの場合はS及びSm値が、輸送モードの場合	
について、説明を追記してはどうか。	はSy及びSuがポイントとなる。モード毎にどのような基準値を用いるのか次回	
	委員会で参考資料を基に説明し報告書に反映する。	

No.	コメント等
1	ひずみ速度によって強度が変わってくるのではないか。本件については改めて議論して欲しい。
7	引張試験データに試験時のひずみ速度を記載した方がよい。また、ひずみ速度が遅くても強度的に問題はないことを示すデータがあることが望
1	ましい。
	アルミニウム合金は200℃近辺で中間温度脆化が起こるとの報告も有り、その中間温度脆化はひずみ速度に強く依存することが知られている。
8	おそらく両アルミニウム合金は、添加物量が高く中間温度脆化域が 200℃より高い可能性があるが、200℃近近の引張挙動のひずみ速度依存性
	を調べ、後世に禍根を残さない様に安心できるデータを提示してほしい。
13	図 C1-2 と図 C1-3 に関して、伸びと絞りの挙動が 3004 と A6N01 とで異なるのはなぜか。
14	ひずみ速度を途中で変更するという引張試験方法について、引用した JIS の規格番号を記載すること。

【回答】

引張特性に及ぼすひずみ速度の影響を確認するために、MB-A3004(チャージ C)及び BC-A6N01(チャージ P(7%B₄C))の初期材を用いて 200℃で の引張試験を実施した。表 C1-1、表 C1-2、図 C1-2 及び図 C1-3 に試験結果を、図 C1-1 に試験片形状図を示す。また、図 C1-4 から図 C1-9 に応力-ひず み線図及び荷重-変位線図を示す。

程度は小さいものの、MB-A3004 と BC-A6N01 の 0.2%耐力と引張強さはひずみ速度への正の依存性を有していることが分かる。すなわち、ひずみ速度 が小さい場合に強度が小さく評価される。ひずみ速度を本確認試験の範囲より小さくすると、引張試験一回に数時間を要するため、クリープの寄与が大き くなり静的強度の評価とはならなくなる。一方で、ひずみ速度がこの領域以下は、これまで実施してきたクリープ試験(試験の実績で約 3×10⁻⁶s⁻¹以下) に対応しており、クリープ強さを適切に反映することでひずみ速度の観点からの評価を行うことができると考えられる。

【設計基準値への影響】

(1) 最も過酷な衝撃荷重である 9m 落下時のひずみ速度は、10⁰[s⁻¹]オーダであり、試験条件のひずみ速度による試験値は保守性を有する。

(2) 低速側ではクリープ試験により得られた値を基に設定するS値にて設計基準値を定めており保守性を有する。

よって、現試験条件に基づく設計基準値設定に影響はないことを確認した。

なお、伸びと絞りの挙動が MB-A3004 と BC-A6N01 とで異なるのは、伸び及び絞りは破断試験片の突合せで計測していることに伴う計測誤差が考えられること、引張試験の伸び及び絞りは高温領域ではバラつきが大きくなることから、材料的に有意な差異はないと考えられる。

(関連資料: MAC4-2-5 コメント No.5 参照)

表 C1-1 引張試験(初期材)結果(試験温度:200℃)

封殿冬州		MB-A	3004		BC-A6N01				
い 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	0.2%耐力	引張強さ	伸び	絞り	0.2%耐力	引張強さ	伸び	絞り	
(いすみ速度)		[MPa]	[MPa]	[%]	[%]	[MPa]	[MPa]	[%]	[%]
耐力まで 0.3 % / min 耐力以降 7.5 % / min	$5.0 imes 10^{-5} [ext{s}^{-1}]$	103	153	37.0	71.8	77	104	25.0	63.3
(通常試験条件)	$1.3 \times 10^{-3} [s^{-1}]$	102	148	35.5	69.8	76	102	29.0	63.3

注)通常試験条件は、JIS G0567 に従い実施したものである。

封驗冬卅			MB-A	3004		BC-A6N01			
	0.2%耐力	引張強さ	伸び	絞り	0.2%耐力	引張強さ	伸び	絞り	
(いりみ述	[MPa]	[MPa]	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
7.5.0/min	1.9×10-3[~-1]	111	152	34.5	72.0	89	107	23.0	61.0
7.5 % / mm	1.5×10 [°] [S ⁻]	110	150	34.5	72.0	84	101	25.0	64.0
	1.4×10 ⁻⁴ [s ⁻¹]	104	133	31.5	76.7	76	86	28.5	69.4
0.05 % / 11111		103	133	33.0	81.4	77	87	28.0	70.0
0.49.0/	7 0×10-5 [1]	102	128	30.0	81.8	77	87	26.0	67.8
0.42 /0 / 11111	7.0×10 ° [s ·]	103	130	30.5	80.4	77	86	25.5	65.8
0.2.0/min	$5.0 \times 10^{-5} [s^{-1}]$	104	127	29.5	82.0	75	85	23.5	68.0
0.3 % / min		102	127	29.5	83.0	78	88	22.5	65.0
0.10.0/	9.7×10-5 [a-1]	101	125	28.5	83.2	76	85	24.5	62.4
0.10 70 / IIIII	$2.7 \times 10^{-5} [s^{-1}]$	99	123	27.0	84.6	76	85	23.0	65.5

表 C1・2 一定ひずみ速度による引張試験(初期材)結果(試験温度:200℃)

図 C1-2 A3004 の 200℃における引張特性に及ぼす試験ひずみ速度の影響

図 C1-3 BC-6N01 の 200℃における引張特性に及ぼす試験ひずみ速度の影響

図 C1-6 ひずみ速度(7.0×10⁻⁵ s⁻¹)での荷重-変位線図及び応力-ひずみ線図

図 C1-7 ひずみ速度(5.0×10⁻⁵ s⁻¹)での荷重-変位線図及び応力-ひずみ線図

図 C1-8 ひずみ速度(2.7×10⁻⁵ s⁻¹)での荷重-変位線図及び応力-ひずみ線図

図 C1-9 ひずみ速度(耐力まで 5.0×10⁻⁵ s⁻¹、耐力以降 1.3×10⁻³ s⁻¹) での荷重-変位線図及び応力-ひずみ線図

第3.1図 A6061BE-T6及びA6063BE-T6の0.2%耐力に及ぼすひずみ速度の影響

出典) 日本原子力研究所、JAERI-M-90-191 試験研究炉用アルミニウム及びアルミニウム合金の降伏点 Sy 及び設計引張強さ Su の案の策定(1990)、P.22

No.	コ メ ン ト 等
2	ビレットの均質化がノウハウと思われるため、供試材で得られた材料特性がその押出し材の全体を代表する、あるいは代表サンプルを用いるこ とで全体の材料特性を説明できるとする論理構築をしておいた方が望ましい。例えば、押出しの初期と終端からも供試体を採取することも考え てはどうか。

【回答】

MAC1-4 実施計画書 L5-95HQ001の図 3-4(2)に記載の角管押出材(N チャージと同一仕様の別ロット材)を用いて、押出初期、中期、終期での引 張特性確認を実施している。表 C2-1に供試材成分仕様を、図 C2-1にサンプリング位置を、図 C2-2から図 C2-5にサンプリング位置での引張特性を示す。 その結果、サンプリング位置に有意差は無く、供試材の代表性に問題ないものと判断している。

							化学	成分 (r	nass %)					
		C :	E.	C	Ма	М.,	C-	7	V,Zr,Ni,B	T :	その	の他	A 1	РС
		51	ге	Cu	Min	Mg	Cr	Zn	など	11	個々	合計	Al	B4C
	成分規定	0.5				0.4								6.9
押出		以上	0.35	0.35	0.5	以上	0.30	0.25	Mn+Cr	0.10	0.05	0.15	建立	以上
No.		0.9	以下	以下	以下	0.8	以下	以下	0.50以下	以下	以下	以下	726日)	7.1
	ビレット No.	以下				以下								以下
#1	A-061115-6	0.84	0.10	0.022	0.002	0.70	0.009	0.004	0.005	0.009			建立	7.0
#1	(297 kg)	0.84	0.10	0.055	0.005	0.70	0.002	0.004	(Mn+Cr)	0.002			72月1	7.0
#9	A-061211-1													
#2	(291 kg)	0.76	0.10	0.001	0.009	0.62	0.009	0.004	0.004	0.007			建立	7.0
#9	A-061211-2	0.76	0.19	0.001	0.002	0.05	0.002	0.004	(Mn+Cr)	0.007			7天日)	7.0
#ə	(297 kg)													

表 C2-1 供試材成分仕様

図 C2-2 各サンプリング位置での強度特性(引張強さ、0.2%耐力)(試験温度:23℃)

図 C2-4 各サンプリング位置での強度特性(伸び、絞り)(試験温度:23℃)

図 C2-5 各サンプリング位置での強度特性(伸び、絞り)(試験温度:200℃)

No.	議事要旨の資料 No およびコメント番号	コメント等
	MAC 2-1	計画書の表 3-3 にある、結晶粒微細化は室温において強化機構として働くことは理解できるが、200°C はアルミ合金 にとってはクリープ領域であり逆に強度は下がるので、強化機構の説明として違和感がある。
3	C13	また、200℃は照射によってボイドクラスターができやすいため、状態図による説明のみでは不足ではないかと感じる。 原研(現原子力機構)で材料試験炉の放射線下で引張試験を行ったデータがあったと記憶しており、参考にしてはどうか。
4	MAC 2-1 C17	照射による引張強さや 0.2%耐力が上昇するというボイドハードニングという現象があること知見として提供する。
15	MAC 4-1 C13	図 C3-1 には代替としてステンレス鋼のデータが掲げられているが、アルミに関する結晶粒径と引張特性の論文は超塑 性をキーワードに探せば見つかるかもしれない。また 軽金属分野であれば見つかる可能性がある。
16	MAC 4-1 C15	照射量による影響が分かりにくいので、適切に表現すること。

【回答】

1. 結晶粒微細化について

結晶粒微細化(結晶粒界)が高温強度に対する強化機構として有効でないことは知られているが、これは破壊がクリープ強さによって支配されることを示している。しかし引張試験に代表されるような変形速度が比較的大きい静的強度においては、高温でも結晶粒微細化は依然として強化機構として機能する。 図 C3-1 に純アルミニウムの降伏応力に及ぼす結晶粒径の影響を示す Hall-Petch 則の比例定数 ky の温度依存性の報告例を示す。温度の上昇に伴って ky は小さくなり、結晶粒界による強化は小さくなるが、例えば 400℃程度でも負にはならずに若干の強化が残存している。ただし、本文献では高温で再化粧 による結晶粒径の変化を起こさせずにこのような評価をすることは困難であるとしており、データは初期の粒径によってプロットがなされている。

このように、静的強度とクリープへの結晶粒径の寄与を区別せずに記述していたことで混乱を招いたと考えられるので、MAC1-4 実施計画書 L5-95HQ001の表 3-3 に「室温における強化機構」と注記し、「クリープ領域(高温領域)では静的強度の強化機構としての寄与は小さく、クリープ強度 は低下させる。」ことを追記することとしたい。

図 C3-1 純アルミニウムの降伏応力に及ぼす結晶粒径の影響を示す Hall-Petch 則の比例定数 ky

(Kassner ME, Li X., The effect of grain size on the elevated temperature yield strength of polycrystalline aluminum, Scripta Metall. Materi., Vol.25, No.12 (1991), pp.2833-2838)

(考察)

MB-A3004 における試験結果(MAC1-5-8 報告済)を図 C3-2 から図 C3-6 に示す。結晶粒粗大化した完全焼なまし処理材における材料強度特性と粗大 化していない長時間過時効熱処理材を比較すると、結晶粒微細化強化の程度が高温より大きいと思われる低温領域、小さいと思われる高温領域ともに完全 焼なまし処理材が若干低強度となっている。

		A3	004	BC-A	6N01		
		供用初期 供用終期 住		供用初期	供用終期		
[1] 固溶 強化	主	Mg	Mg (平衡固溶量)	_	_		
	副	Cu,Mn	Cu,Mn (平衡固溶量)	—	_		
[2] 析出 強化	主	Al ₆ Mn Al ₆ (Fe,Mn) Al ₁₈ (Fe,Mn) ₃ Si	Al ₆ Mn Al ₆ (Fe,Mn) Al ₁₈ (Fe,Mn) ₃ Si	$\mathrm{Mg_2Si}(6")$	$Mg_2Si(6)$		
	副	Al ₃ Fe	Al_3Fe	Al_2O_3 B_4C	Al_2O_3 B_4C		
[3] 加工硬化		あり (整直 0.5~2%)	_	あり (整直 0.5~2%)	_		
[4] 組織微細化		あり	あり ^{注2)} (回復再結晶等)	あり	あり ^{注2)} (回復再結晶等)		

表 3-3 強化機構概要 注 1)

注1) 室温における強化機構

注2) クリープ領域(高温領域)では静的強度の強化機構としての寄与は小さく、クリープ強度は低下させる。

無断複製·転載禁止

破断部断面観察

図 C3-3 引張試験片断面観察(A チャージ、常温引張試験片) (MAC1-5-8 図 30)

図 C3-4 520℃×10hr 保持 0.3℃/hr 冷却時の組織(完全焼なまし処理) (MAC1-5-8 図 25)

図 C3-5 520℃×10hr 保持 0.3℃/hr 冷却時の組織(完全焼なまし処理) 全板厚観察

無断複製・転載禁止

熱処理	初期材	250℃×1 万時間	300℃×1 万時間
表層			Т 100 <i>ш</i>
1/4 t			
1/2 t		100 µm	

図 C3-6 長時間過時効処理における組織観察(MAC1-5-8 図 13、図 14)

2. 照射影響について

コメント管理番号 No.3 及び No.4 に係る中性子照射による材料特性に関する影響について、ま とめて回答する。

(1) 検討内容

BC-A6N01 及び MB-A3004 に対して、次の検討を行った。

- 中性子照射試験結果の分析、検討
- ② 中性子、電子線、Heイオン等の照射影響に関する文献調査
- (2) 検討結果

BC-A6N01 については、①,②を、MB-3004 については、②を実施した。

- (a) BC-A6N01 に対する中性子照射(約4.3×10¹⁶n/cm²)試験の結果、照射前後の引張試験を 実施し、有意な強度特性変化が無いことを確認した。
- (b) 文献調査の結果、短期間に 2×10¹⁷n/cm²の照射量からボイド形成される報告や、10²¹n/cm² を超える照射量から材料特性(強度、クリープ)影響が生じることが報告されていること を確認した。 このようにキャスク使用環境(60年間の保守的な照射量 1.4×10¹⁵ n/cm²)を2桁以上超 える照射量より材料特性変化が確認されていることから、キャスク使用環境では、有意な 材料特性変化は生じないと考えられる。
- (3) 照射影響に対する結論要約
 - (a) キャスクバスケット使用環境は、60年間の総照射量(中性子)が1.4×10¹⁵ n/cm²以下であり、この中性子照射による有意な強度特性への影響はない。
 - (b) キャスクバスケット使用環境は、60年間の総照射量(中性子)が1.4×10¹⁵ n/cm²以下であり、この中性子照射による有意なクリープ特性への影響はない。
- 2.1 BC-A6N01 材の照射試験
 - (1) 中性子照射後引張試験条件
 - ・供試材 : 符号 K および M を試験に供した。
 - ・試験片 : 丸棒試験片 (JIS 14A 号試験片) を用いた。
 - ・試験片採取方向:引張方向が押出方向に平行になるように試験片を採取した。
 - ・中性子照射条件:バスケットが60年間に受けると想定される保守的な照射量

(1.4×10¹⁵ n/cm²)を上回る約 4.3×10¹⁶n/cm²の照射を行った。

照射は室温で実施した。(図 C3-7 参照)

弥生炉仕様

最大出力 2kW/h,中性子束 0.8×10¹²n/cm²·sec(2kW) 30kW 積算照射量(15hr)となるように照射を実施 (約 4.3×10¹⁶n/cm²)

- ・試験温度 : 室温、150、200及び250℃
- 記録
 : 引張強さ、0.2%耐力及び伸び

(a) 試験片図

(b) 照射ケース配置図 図 C3-7 中性子照射影響評価用引張試験片形状図及び配置図

(2) 試験結果

図 C3-8 に、BC-A6N01 材の照射前後における引張試験結果を示す。

照射後の強度が若干高めとなったが差異は僅かである。一方、伸びについては明確な傾向が 確認されなかった。よって、中性子照射に伴うボイドハードニングについて、強度特性へ有意 に影響しなかったと考えられる。

なお、MB-A3004の照射試験は実施していないが、成分として Mn の添加量の違いのみであり、10¹⁶n/cm²の中性子照射量による影響は殆ど生じないと考えられる。

図 C3-8 約 4.3×10¹⁶n/cm² 中性子照射前後のボロン添加アルミニウム合金の引張試験結果

2.2 文献情報(照射量と強度の関係)

図 C3-9 と図 C3-10 に BC-A6N01 材に化学成分が類似する A6061-O 材の引張特性に及ぼす 中性子照射量の影響を示す^[1]。それぞれ 50°C と 150°C での引張試験結果であり、横軸に示 された中性子照射を行った後に行った引張試験結果を縦軸に示している。本結果は、中性子照 射による 0.2%耐力と引張強さの増大、伸びの低下が 10²¹n/cm²以上の照射量によって発現し てくることを示している。

図 C3-9 A6061-Oの 50°C における機械的性質に及ぼす中性子照射の影響^[1]

図 C3-10 A6061-Oの 150°C における機械的性質に及ぼす中性子照射の影響[1]

また、加賀らは、A6N01 他の母材と溶接部に 90℃で 2.0×10¹⁸ n/cm²~1.7×10¹⁹ n/cm²の中性 子を照射した材料に対する引張強度等への影響を試験しており、図 C3-11 に示すように A6N01 母材に対しては有意な影響が認められなかったことを報告している。^[2]

Fig. 11 Neutron fluence dependences of ultimate tensile strength and 0.2% proof stress of A6NO1at various test temperatures

図 C3-11 A6N01の機械的性質に及ぼす中性子照射の影響^[2]

その他、Horsewell らは、純アルミ材に 120℃で 5×10²⁰ n/cm²(0.65 dpa)迄の中性子を照射 したときの影響について、2×10¹⁷ n/cm²(6×10⁻⁴ dpa)からボイドが観察されたことを報告して いる^[3]。(TEM 観察写真は 1×10²⁰ n/cm²以上のものが掲載されている。)

また、S.R.Soria らは、純アルミ材にヘリウムイオンを照射し、原子間力顕微鏡(AFM)や SEM により 1 dpa に相当する 1.72×10¹⁶ ions/cm²以上でブリスターが観察されたことを報告し ている^[3]。(観察写真は 1 dpa 以上のものが掲載されている。) ここで、1 dpa は前述の文献[1] を参考に換算すると、約 7×10²⁰ n/cm²に相当する。^[4]

以上の通り、これら文献によるボイドの発生や機械的性質の変化が生じ始めると報告されている照射量は2×10¹⁷ n/cm²から 10²¹ n/cm²程度迄であるが、バスケットに用いられるアルミ材への照射量は使用済燃料からの貯蔵初期の中性子照射が 60 年間継続するとした保守的な評価でも 1.4×10¹⁵ n/cm² であることから、これら照射量に比して十分小さいため、有意な強度特性への影響はないと考えられる。

2.3 文献情報(照射量とクリープの関係)

放射線環境下でのクリープ特性について検討した。

文献^[5]によると純アルミ材に対する中性子照射環境下でのクリープ試験において、クリープ ひずみが非照射に比べ約 20 倍に増加した。

文献の照射環境はおおよそ以下の通りである。

・中性子線束:1.4×10¹⁶ (n/m²・s)

•中性子線量:1.4×10¹⁶ (n/m²·s)×10000(cm²/m²)×10(h)×3600(s/h)

 $=5.04 \times 10^{16}$ (n/cm²)

(図中最初のプロットである 10h で算出。)

文献の照射データは、バスケットの使用環境と比べ貯蔵初期の線束(7×10⁵ n/cm²·s)で10桁 異なる。また、同文献での照射量は使用環境の線束が保守的に60年間継続すると仮定した照射 量(1.4×10¹⁵ (n/cm²))に対しても、1桁以上高い。

キャスク使用環境の照射量は、実験条件の中性子束での照射時間に換算すると約 0.3 時間 (1.4×10¹⁵ (n/cm²)/(5.04×10¹⁶ (n/cm²)/10(h)))に相当し、図 C3-12 中の赤線に示すように照 射の影響が僅かな領域であることから、照射線量の影響は無視できると考える。

なお、重照射の文献の多い中では比較的近い環境と言えることから、本文献を参考としてクリープに伴うバスケット構造健全性について検討した。なお、試験温度は393K(120℃)であり、バスケットの使用環境200→100℃(実質約150℃)と比べ若干低い。

現有のクリープ試験結果に対し、上記文献を参考に約20倍のクリープひずみへの影響を考慮 して、照射によるクリープ強度への影響を推定した。

現有のクリープ試験結果から、A3004-H112及び BC-A6N01 材の定常クリープ速度強度は表 C3-1のとおり整理している。設計強度は 10万時間の破断強度を算出したものであるが、ここ では歪速度が 20 倍になることを、簡易的に時間を 20 倍することで考慮し、200万時間の破断 強度と比較する。(図 C3-13 及び図 C3-14 参照)

なお、時間外挿する倍率が大きいため参考値である。

	クリープ破断強度(MPa)			
クリープ破断強度評価式	10万h	200 万 h		
LMP = 14.36 - 3.404(logo) -	26.5	18.6		
$0.221(\log \sigma)^2$				
LMP=67.45-93.31logo +51.14(logo) ² -9.773(logo) ³	26.5	22.1		
	クリープ破断強度評価式 LMP = 14.36-3.404(logo) - 0.221(logo) ² LMP=67.45-93.31logo +51.14(logo) ² -9.773(logo) ³	クリープ破断強度評価式クリープ破けクリープ破断強度評価式10万hLMP = 14.36-3.404(logo) - 0.221(logo)226.5LMP=67.45-93.31logo +51.14(logo)2-9.773(logo)326.5		

表 C3-1 クリープ破断強度評価式及びクリープ破断強度の推定値

ここで、LMP = (T+273.15)×(C+logTr)×0.001

T: 温度(℃) =200℃、Tr: 破断時間

定数 C: BC-A6N01=16.26、MB-A3004=14.16

以上の簡易評価の結果、2次近似をしている MB-A3004 材において約 7MPa、3次近似している BC-A6N01 において約 4MPa クリープ破断強度が低下する結果が得られたが、キャスク貯蔵中の発生応力1 MPa 未満に対して、十分な強度を有していることが確認できた。

なお、温度(~200℃)、線量(1.4×10¹⁵ n/cm²)とも時間減衰を考慮しておらず、また図 C3-11 に示す通り線量評価も 10 倍以上の差異の大きい仮定であるため、本検討条件は保守側な推定で ある。

図 C3-14 BC-A6N01 応力-破断時間プロット

【引用文献】

- [1]: K.Farrell and R.T.King, Tensile properties of neutron irradiated 6061 aluminum alloy in annealed and precipitation-hardened conditions, Effects of Radiation on Structural Materials, ASTM STP 683 p440-449, (1979)
- [2]:加賀ら、低温構造用アルミニウム合金及びそれらの電子ビーム溶接継手の極低温強度に及ぼ す中性子照射の影響、京都大学原子炉実験所 Technical Report、KURRI-TR-334、(1990)、P.30
- [3] : Andy Horsewell, et.al., "Influence of grain and subgrain boundaries on void formation and growth in aluminum irradiated with fast neutrons", Radiation-induced changes in microstructure, 13th International Symposium on Effects of Radiation on Material, ASTM STP 955, 220-229 (1987)
- [4]: S.R.Soria, et al., Defect induced by helium ion irradiation in aluminum alloys, Procedia Material Science 8 (2015), P.486-493
- [5] : Shavkat Sh. Ibragimov, et.al., "Radiation-induced creep of aluminum and copper alloy", Influence of Radiation on Material Properties, 13th International Symposium (Part II), ASTM STP 956, 23-25 June 1986,

No.	コメント等
5	資料 1-5-3の図 9~図 12 について、0h~1000hの間の線をつなげると誤解を与えるおそれがあるので、線の引き方を見直すことが望ましい。

資料 1-5-3 の図 9~図 12 について、1,000hr か ら 10,000hr に線を引く修正を行った。 図 C5-1 から図 C5-4 に修正版を示す。

図 C5-1 (図 9) に示す 250℃過時効処理の室温 における 0.2%耐力が過時効時間と共に低下する 現象を確認した。当該事項は、他の処理及び 250℃過時効処理の引張強さ等のデータに有意な 過時効時間による差異が認められないことから バラつきの範囲と判断した。

また、材料基準値策定は、99%包絡下限を採用 することから、低下した試験値を含み評価するた め、保守的な評価となることから問題無いものと 判断した。

図 C5-2 図 10 300℃過時効処理における 0.2%耐力と過時効時間の関係

図 C5-4 図 12 300℃過時効処理における引張強さと過時効時間の関係

No.	コメント等
5	完全焼なまし材と過時効材を比べた時に、伸びや絞りに差が出ている原因について把握しているか。

当該事象(BC-A6N01)は、資料 MAC1-5-3 図 28 (P.24)において、長時間過時効熱処理材と完全焼なまし処理材の強度特性比較を 0.2%耐力及び引 張強度はほぼ同等の挙動を報告(資料 MAC1-5-3 図 26、図 27 (P.23))しているが、伸び(絞り:長時間過時効処理材は未計測)は総じて完全焼なまし 処理材が低値となっているものである。

BC-A6N01の初期材と完全焼なまし処理材の組織観察を実施した。その結果、図 C6-1 から C6-3 に示すとおり、Mg2Si の析出物サイズが異なり、完全 焼なまし処理により粗大化していることを確認した。よって、当該 Mg2Si 析出物を起点に破断が生じ易くなったため、長時間過時効処理材に比べ完全焼 なまし処理材の伸びが低下した原因と考える。

なお、当該伸びのバラつきの範囲の観点について、当該範囲は文献にも示されているとおり一般的なバラつきの範囲内と考えている。

参考資料 2-55

BC-A6N01(チャージ P) 初期材

視野①

視野②

BC-A6N01 (チャージ P) 完全焼なまし材

視野①

★ : B₄C の脱落痕(代表例)

視野②

完全焼なまし材は、初期材に比べて Mg2Si 析出物の粒子 サイズが大きい傾向であった。

図 C6-2 BC-A6N01 の EPMA 面分析結果

BC-A6N01 (チャージ P) 完全焼なまし材

Mg は全体的に分布しているため、Si とミクロ組織の対応に着目して、ミクロ組織での Mg2Si を判断した。

BC・A6N01(チャージ P) 完全焼なまし材ミクロ組織と Si マッピングの比較

(参考) ミクロ組織と Mg マッピングの比較

図 C6-3 BC-A6N01 の EPMA 面分析結果(分析)

【参考文献】溶体化温度からの冷却速度と Mg2Si 粒子径

出典)アルミニウムの組織と性質,軽金属学会,P284

No.	コメント等
9	修正の際、図 C2-2~2-5 について、引張試験におけるひずみ速度も記載すること [MAC 2-2-2 参照]。

引張試験に係るひずみ速度を、第2回確性委員会資料 MAC2-2-1 から MAC2-2-5 に示す試験データに追記した。 引張試験は、JIS G0567の規定に従い、耐力までは 5.0×10⁻⁵ [s⁻¹]、耐力以降は 1.3×10⁻³ [s⁻¹]で行っている。

No.	コメント等	
10	導電率測定を実施した試験片に対してバフ研磨及びエッチングを施し、SEMの画像を2値化して観察すれば析出物が観察できるので、実施して はどうか。できれば時間軸に対応したデータを示してほしい。	

B4C 粒子が含有されておらず析出物の観察が比較的容易と思われた MB-A3004 について検討を行った。エッチング液やエッチング程度をさまざまに変 化させて観察を行ったものの、析出物を周囲の他のコントラストと明確に区別することは困難であった。

また、時間軸(過時効時間)に対応した試料が初期材(0hr)と最大過時効時間(MB-A3004:1万hr、 BC-A6N01:2万hr)のみであり、時間軸に対応した処理は現時点で準備することが困難である。

図 MB-3004 完全焼なまし材の鏡面研磨面エッチング後 SEM 観察結果の例 (1%フッ化水素酸水溶液で 10 秒間エッチングの例。条件は様々に変化させてコントラストが良くなる条件を検討した)

参考資料 2-63

No.	コメント等
11	統計処理におけるデータ数について、現状では o 自体の信頼性が損なわれている状態での議論となっていないか。データ数が少ない場合の評価 の信頼性を担保する根拠や考え方を整理する必要がある。

データの統計的信頼性を確保する方法は、試験データを増大させる他にない。データの数が明らかに十分でなかった完全焼きなまし材を対象に、以下の 通り可能な限り引張試験を行う。

MB-A3004 室温引張試験データ: 従来の6点から69点に増加(表1から表3)

BC-A6N01 室温引張試験データ: 従来の4 点から28 点に増加(表4から表5)

高温の引張試験の追加試験は計画していないが、高温でのデータの変動幅は、室温での多くの試験データによって得られた変動係数(標準偏差/平均値)を 各温度に適用した評価を実施する。

(関連資料: MAC4-2-10 コメント No.17-22 回答資料)

熱	処理条	件				弓	張 試	験 結	果
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃ /hr)	供試材	試験片 符号	試験 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)
				A-FA30-1	23	80	162	21.5	55.0
				A-FA30-8	23	75	161	21.5	60.4
				A-FA30-15	23	80	166	20.5	57.8
				A-FA30-16	23	79	167	20.5	58.4
				A-FA-17	23	74	145	28.0	62.6
				A-FA-18	23	80	170	20.0	54.8
				A-FA-19	23	81	166	20.5	59.4
				A-FA-20	23	82	166	21.0	56.0
				A-FA-21	23	79	167	20.5	57.3
				A-FA-22	23	82	168	19.5	52.7
				A-FA-23	23	82	166	19.5	55.4
				A-FA-24	23	85	166	21.0	56.3
				A-FA-25	23	83	166	20.0	55.7
				A-FA-26	23	80	168	20.5	54.9
				A-FA-27	23	83	169	20.0	57.0
				A-FA-28	23	63	143	28.0	55.2
- 20	10	0.0		A-FA-29	23	86	168	19.5	57.1
520	10	0.5	A	A-FA-30	23	83	169	19.0	53.9
				A-FA-31	23	82	167	19.5	54.8
				A-FA-32	23	82	168	20.0	59.1
				A-FA-33	23	82	167	20.5	60.1
				A-FA-34	23	81	170	21.0	59.1
				A-FA-35	23	81	169	19.5	56.1
				A-FA30-2	100	77	160	19.0	52.8
				A-FA30-9	100	86	165	18.0	49.8
				A-FA30-3	150	80	153	24.5	59.1
				A-FA30-10	150	83	153	23.5	55.2
				A-FA30-4	200	75	121	38.0	80.2
				A-FA30-11	200	74	120	40.5	79.5
				A-FA30-5	250	58	82	62.0	93.7
				A-FA30-12	250	58	83	54.0	93.0
				A-FA30-6	300	39	57	86.0	97.3
				A-FA30-13	300	39	58	88.0	97.2
				A-FA30-7	350	26	41	59.5	97.5
				A-FA30-14	350	27	41	63.0	97.4

表1 A3004の完全焼もどし材の引張試験結果(供試材A)

熱	処理条	件				弓	張 試	験 結	果
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃ /hr)	供試材	試験片 符号	試験 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)
				B-FA30-1	23	85	173	20.5	52.6
				B-FA30-8	23	85	169	21.0	57.3
				B-FA30-15	23	83	166	20.5	55.7
				B-FA30-16	23	86	168	21.0	57.9
				B-FA-17	23	81	165	21.5	60.0
				B-FA-18	23	81	170	21.0	55.5
				B-FA-19	23	80	168	21.0	58.1
				B-FA-20	23	80	167	21.5	57.0
				B-FA-21	23	80	166	21.0	57.0
				B-FA-22	23	79	168	21.0	57.6
				B-FA-23	23	86	170	20.0	56.0
				B-FA-24	23	82	173	20.0	58.4
				B-FA-25	23	80	167	21.0	58.4
				B-FA-26	23	79	168	21.0	58.6
				B-FA-27	23	80	167	20.5	56.9
				B-FA-28	23	81	166	20.5	53.9
520	10	0.2	р	B-FA-29	23	79	166	21.0	62.2
520	10		Б	B-FA-30	23	79	166	20.5	59.2
				B-FA-31	23	78	170	20.5	56.6
				B-FA-32	23	79	167	21.0	57.6
				B-FA-33	23	77	167	21.5	56.3
				B-FA-34	23	78	168	21.0	57.6
				B-FA-35	23	80	169	20.0	57.8
				B-FA30-2	100	91	168	18.5	50.9
				B-FA30-9	100	92	168	17.5	51.7
				B-FA30-3	150	86	157	23.0	58.9
				B-FA30-10	150	86	159	23.0	54.3
				B-FA30-4	200	77	121	38.5	78.5
				B-FA30-11	200	76	121	38.0	80.1
				B-FA30-5	250	59	83	62.0	94.1
				B-FA30-12	250	59	83	54.0	93.6
				B-FA30-6	300	41	59	75.5	97.0
				B-FA30-13	300	40	59	69.0	97.1
				B-FA30-7	350	27	43	51.0	97.3
				B-FA30-14	350	27	42	62.5	97.8

表 2 A3004 の完全焼もどし材の引張試験結果(供試材 B)

温度 (C) 保持 時間 (hr) 冷却 速度 (C) 供試 材 試験片 符号 試験 (C) 0.2% 耐力 (MPa) 引張 強さ (MPa) 伸び (%) 絞り (%) Image: Comparison of the period (hr) F C-FA30-1 23 78 168 20.5 53.6 C-FA30-15 23 79 166 20.5 54.8 C-FA30-15 23 79 170 20.5 56.8 C-FA30-16 23 84 174 19.5 57.8 C-FA-17 23 86 167 20.5 55.5 C-FA-18 23 83 166 20.5 56.7 C-FA-19 23 83 166 20.5 55.2 C-FA-19 23 83 166 20.5 55.2 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-23 23 85 169 19.5 56.2	熱	処理条	件				弓	張 試	験 結	果							
C-FA30-1 23 78 168 20.5 53.6 C-FA30-8 23 79 166 20.5 54.8 C-FA30-15 23 79 170 20.5 56.8 C-FA30-16 23 84 174 19.5 57.8 C-FA-17 23 86 167 20.5 55.5 C-FA-18 23 83 167 21.0 57.2 C-FA-19 23 83 166 20.5 56.7 C-FA-19 23 83 166 20.5 55.2 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8	温度 (℃)	保持 時間 (hr)	冷却 速度 (℃ /hr)	供試材	試験片 符号	試験 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)							
C-FA30-8 23 79 166 20.5 54.8 C-FA30-15 23 79 170 20.5 56.8 C-FA30-16 23 84 174 19.5 57.8 C-FA-17 23 86 167 20.5 55.5 C-FA-18 23 83 167 21.0 57.2 C-FA-19 23 83 166 20.5 56.7 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8					C-FA30-1	23	78	168	20.5	53.6							
C-FA30-15 23 79 170 20.5 56.8 C-FA30-16 23 84 174 19.5 57.8 C-FA-17 23 86 167 20.5 55.5 C-FA-18 23 83 167 21.0 57.2 C-FA-19 23 83 166 20.5 56.7 C-FA-19 23 83 166 20.5 55.2 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8					C-FA30-8	23	79	166	20.5	54.8							
C-FA30-16 23 84 174 19.5 57.8 C-FA-17 23 86 167 20.5 55.5 C-FA-18 23 83 167 21.0 57.2 C-FA-19 23 83 166 20.5 56.7 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8					C-FA30-15	23	79	170	20.5	56.8							
C-FA-17 23 86 167 20.5 55.5 C-FA-18 23 83 167 21.0 57.2 C-FA-19 23 83 166 20.5 56.7 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8					C-FA30-16	23	84	174	19.5	57.8							
C-FA-18 23 83 167 21.0 57.2 C-FA-19 23 83 166 20.5 56.7 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8					C-FA-17	23	86	167	20.5	55.5							
C-FA-19 23 83 166 20.5 56.7 C-FA-20 23 82 167 20.0 55.2 C-FA-21 23 65 147 26.5 53.0 C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8					C-FA-18	23	83	167	21.0	57.2							
C-FA-20238216720.055.2C-FA-21236514726.553.0C-FA-22238516919.556.2C-FA-23238516721.056.8					C-FA-19	23	83	166	20.5	56.7							
C-FA-21236514726.553.0C-FA-22238516919.556.2C-FA-23238516721.056.8					C-FA-20	23	82	167	20.0	55.2							
C-FA-22 23 85 169 19.5 56.2 C-FA-23 23 85 167 21.0 56.8					C-FA-21	23	65	147	26.5	53.0							
C-FA-23 23 85 167 21.0 56.8					C-FA-22	23	85	169	19.5	56.2							
					C-FA-23	23	85	167	21.0	56.8							
C-FA-24 23 79 166 20.0 55.7					C-FA-24	23	79	166	20.0	55.7							
C-FA-25 23 84 167 20.0 57.1					C-FA-25	23	84	167	20.0	57.1							
C-FA-26 23 83 168 21.0 56.8			0.3		C-FA-26	23	83	168	21.0	56.8							
C-FA-27 23 84 169 20.0 56.1					C-FA-27	23	84	169	20.0	56.1							
C-FA-28 23 86 170 19.5 60.4					C-FA-28	23	86	170	19.5	60.4							
520 10 0.2 C C-FA-29 23 88 169 21.0 55.2	590	10		C	C-FA-29	23	88	169	21.0	55.2							
520 10 0.3 C C-FA-30 23 83 168 19.5 55.6	520	10		C	C-FA-30	23	83	168	19.5	55.6							
C-FA-31 23 88 169 19.5 52.8					C-FA-31	23	88	169	19.5	52.8							
C-FA-32 23 90 176 19.0 55.1												C-FA-32	23	90	176	19.0	55.1
C-FA-33 23 79 169 20.5 55.4					C-FA-33	23	79	169	20.5	55.4							
C-FA-34 23 77 168 19.5 56.1					C-FA-34	23	77	168	19.5	56.1							
C-FA-35 23 81 170 19.5 54.0								C-FA-35	23	81	170	19.5	54.0				
C-FA30-2 100 83 165 18.0 49.2					C-FA30-2	100	83	165	18.0	49.2							
C-FA30-9 100 86 166 17.5 47.8					C-FA30-9	100	86	166	17.5	47.8							
C-FA30-3 150 82 156 22.5 55.8					C-FA30-3	150	82	156	22.5	55.8							
C-FA30-10 150 81 158 22.5 52.7					C-FA30-10	150	81	158	22.5	52.7							
C-FA30-4 200 74 122 36.5 77.9					C-FA30-4	200	74	122	36.5	77.9							
C-FA30-11 200 77 123 38.5 78.8					C-FA30-11	200	77	123	38.5	78.8							
C-FA30-5 250 59 85 48.5 91.3					C-FA30-5	250	59	85	48.5	91.3							
C-FA30-12 250 61 86 46.5 92.0					C-FA30-12	250	61	86	46.5	92.0							
C-FA30-6 300 41 60 86.0 97.2					C-FA30-6	300	41	60	86.0	97.2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					C-FA30-13	300	42	60	86.5	97.3							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					C-FA30-1/	350	20 28	40 41	91.0	97.5							

表3 A3004の完全焼もどし材の引張試験結果(供試材C)

熱	処理条	件				引	張 試	験 結	果		
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃ /hr)	供試材	試験片 符号	試験 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)		
				L6-FA31-1	23	75	158	17.5	27.2		
				L6-FA31-8	23	79	164	15.0	27.6		
				L6-FA31-15	23	81	165	15.0	28.0		
				L6-FA31-16	23	82	165	15.5	31.2		
				P6-FA-17	23	87	169	13.5	24.2		
				P6-FA-18	23	82	167	14.0	27.4		
				P6-FA-19	23	82	161	15.5	30.8		
				P6-FA-20	23	81	162	15.0	30.8		
				P6-FA-21	23	82	163	14.5	28.0		
				P6-FA-22	23	85	170	13.5	26.1		
				P6-FA-23	23	84	168	13.5	27.0		
		0.5		P6-FA-24	23	81	162	16.0	29.4		
F 40	10		0	P6-FA-25	23	85	166	14.5	26.8		
540	10		0	P6-FA-26	23	82	167	14.0	26.8		
				L6-FA31-2	100	70	131	17.0	33.4		
				L6-FA31-9	100	74	135	16.5	31.2		
				L6-FA31-3	150	62	108	19.0	40.5		
				L6-FA31-10	150	70	124	18.0	35.0		
				L6-FA31-4	200	57	91	22.5	49.0		
				L6-FA31-11	200	60	97	18.0	39.6		
				L6-FA31-5	250	51	76	20.5	53.9		
				L6-FA31-12	250	53	78	20.5	49.7		
				L6-FA31-6	300	45	64	23.0	56.9		
						L6-FA31-13	300	46	64	33.5	62.1
						L6-FA31-7	350	37	54	23.5	59.3
				L6-FA31-14	350	37	53	33.0	64.2		

	表 4	BC-6N01の完全焼もどし材の引張試験結果(供試材 O)
--	-----	-------------------------------

熱	処理条	件				引	張 試	験 結	果					
温度 (℃)	保持 時間 (hr)	冷却 速度 (℃ /hr)	供試材	試験片 符号	試験 温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び (%)	絞り (%)					
				O6-FA31-1	23	83	168	15.5	26.4					
				O6-FA31-8	23	82	173	14.5	28.0					
				O6-FA31-15	23	87	177	13.0	28.9					
				O6-FA31-16	23	86	176	14.0	24.6					
				O6-FA-17	23	85	174	13.0	24.4					
				O6-FA-18	23	87	176	12.5	25.5					
				O6-FA-19	23	87	179	12.5	23.6					
				O6-FA-20	23	90	179	13.0	24.8					
				O6-FA-21	23	88	177	13.0	25.1					
		0.5		O6-FA-22	23	88	176	13.0	27.6					
				O6-FA-23	23	84	173	14.5	28.9					
				06-FA-24	23	83	176	13.0	24.2					
F 40	10		п	O6-FA-25	23	87	176	13.5	26.4					
540	10		Р	O6-FA-26	23	88	176	14.0	27.0					
				O6-FA31-2	100	75	146	14.5	32.0					
				O6-FA31-9	100	76	147	14.5	27.2					
				O6-FA31-3	150	69	125	19.0	35.2					
				O6-FA31-10	150	67	116	17.5	30.6					
				O6-FA31-4	200	59	99	21.5	43.8					
				O6-FA31-11	200	58	89	28.0	56.0					
				O6-FA31-5	250	53	77	26.5	56.9					
				O6-FA31-12	250	54	79	27.0	54.8					
				O6-FA31-6	300	47	66	33.0	59.6					
									O6-FA31-13	300	47	65	24.0	57.8
											06-FA31-7	350	35	50
				O6-FA31-14	350	36	51	22.0	55.1					

表 5 BC-6N01 の完全焼もどし材の引張試験結果(供試材 P)

No.	コメント等
12	A18の「2.33σ」は、正確には"平均値-2.33o"なので修正すること。

コメント内容を反映し、該当箇所を以下のように修正した。

評価対象	完全焼な	まし材
項目	0.2%耐力	引張強さ
データ数	67	67
室温試験平均値	81.6	167.5
室温試験標準偏差	3.08	3.63
99%包絡下限(平均值-2.33o)	74.4	159.1
変動係数	0.0378	0.0217

表 1 MB-A3004 の室温 99% 包絡下限の算出結果(完全焼なまし材)

No.	コメント等
17	Q19の結果として、3004の変動係数が 0.02~0.04 であることは、高温側への適用が妥当であると考えてよいか。温度依存性が A6N01 とは異なる。
18	高温の変動係数が室温の変動係数より大きい 3004の場合、強度が下がってバラつきが大きくなることを意味するため非保守側となる。バラつき を補償するような方法を検討すべきではないか。
19	分散分析により、各温度における信頼性を見る方法がある。
20	最もバラついた変動係数で評価した場合にどのような結果になるのか検討すべきではないか。
2 1	例えば、69 点のデータから 10 点を選ぶサンプリングを繰り返して変動係数のバラつきを検討する方法も1つである。
22	平均値で規格化した際、分散が温度に依存しないという前提で 69 点を比較すれば、バラつきの範囲に収まるかもしれない。

No.18 から No.22 は No.17 への対応方法としてご意見頂いた内容でした。これらも検討しましたが、No.17 への対応としては、高温(300℃)での引張試験 を追加することによって確認しました。

- ・ 室温で確認した変動係数が他の温度においても大きく変わらないことを確認するため、300℃でも試験数を増してそのばらつきを検討した。この時、用いる供試材は、長時間時効材や完全焼なまし材よりもばらつき要因を多く含む可能性のある初期材とした。
- BC-6N01の完全焼なまし材では、室温の0.2%耐力と引張強さの変動係数は、それぞれ表1の通り0.0393と0.0365であった。300℃で初期材を対象に 16本の引張試験(表5)を行って評価した変動係数は、表2に示すようにそれぞれ0.0391と0.0414であった。この大きさは室温の場合と同程度と考えられる。
- ・ MB-A3004 の完全焼なまし材では、室温の 0.2%耐力と引張強さの変動係数は、それぞれ表 3 の通り 0.0378 と 0.0217 であった。300℃で 18 本の引張試験(表 6)を行って評価した変動係数は、表 4 に示すようにそれぞれ 0.0337 と 0.0237 であった。この大きさは室温の場合と同程度と考えられる。
- これらのことから、完全焼なまし材では室温と300℃において、0.2%耐力と引張強さの平均値に対する標準偏差の比は同等であることが確認された。これにより室温の多数の試験データから得られたばらつきを変動係数として各温度に適用することには大きな問題はないと考えられる。また、完全焼なまし材と初期材とで変動係数が同等であることから、同じ変動係数を長時間時効材に適用することも可能であると考えられる。

無断複製·転載禁止

評価対象	完全焼なまし材		
項目	0.2%耐力	引張強さ	
データ数	28	28	
室温試験平均値	84.0	170.1	
室温試験標準偏差σ	3.31	6.21	
99%包絡下限(平均值·2.33σ)	76.3	155.6	
変動係数	0.0393	0.0365	

表1 BC-A6N01の室温 99%包絡下限の算出(完全焼なまし材)

表 2 BC-A6N01 の 300℃における引張試験結果

評価対象	初期	期材	
項目	0.2%耐力	引張強さ	
データ数	16		
供試材	0, P		
室温試験平均值 (MPa)	47.8	63.9	
室温試験標準偏差(MPa)	1.87	2.64	
変動係数	0.0391	0.0414	

表3 MB-A3004の室温99%包絡下限の算出結果(完全焼なまし材)

評価対象	完全焼なまし	_材
項目	0.2%耐力	引張強さ
データ数	67	67
室温試験平均値	81.6	167.5
室温試験標準偏差	3.08	3.63
99%包絡下限(平均值·2.33σ)	74.4	159.1
変動係数	0.0378	0.0217

表 4 MB-A3004 の 300℃における引張試験結果

評価対象	初邦	期材	
項目	0.2%耐力	引張強さ	
データ数	18		
供試材	A, B, C		
室温試験平均值 (MPa)	49.7	69.8	
室温試験標準偏差 (MPa)	1.67	1.65	
変動係数	0.0337	0.0237	

	<u>///-</u>	計驗		引 張 試	験 結 果	
状態	供試材	温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び(%)	絞り (%)
		300	48	63	33.0	73.6
		300	48	64	44.5	77.4
		300	47	64	29.0	74.4
	0	300	48	65	27.5	73.0
	0	300	48	65	26.5	72.3
		300	47	64	27.5	72.8
		300	47	63	27.5	70.7
211 廿日 七十		300	42	55	33.0	80.8
们知何	P	300	47	63	38.5	78.4
		300	47	63	29.5	76.8
		300	50	66	33.5	72.0
		300	50	66	34.0	76.0
		300	49	66	28.5	72.7
		300	49	65	39.0	77.4
		300	49	66	26.5	73.7
		300	49	65	36.5	78.2

表 5 BC-A6N01 初期材の 300°Cにおける追加引張試験結果

	/11.	計驗	引張試験結果			
状態	供試材	温度 (℃)	0.2% 耐力 (MPa)	引張 強さ (MPa)	伸び(%)	絞り (%)
		300	51	72	63.0	95.3
		300	50	70	67.0	95.8
	٨	300	51	70	46.5	94.0
	A	300	51	70	64.5	95.4
		300	52	72	67.0	96.0
		300	54	73	61.0	94.8
	В	300	48	68	54.0	94.8
		300	49	68	53.5	94.5
如田井		300	48	67	53.5	94.6
101791111		300	48	68	50.5	94.8
		300	48	68	50.0	94.7
		300	48	69	54.0	95.3
	-	300	50	71	56.5	95.6
		300	50	71	55.5	95.3
		300	49	70	53.5	94.8
	U	300	50	71	51.0	95
		300	48	69	55.5	94.8
		300	50	70	51.0	93.6

表 6 MB·A3004 初期材の 300℃における追加引張試験結果

No.	コメント等
23	正規確率分布の計算をいくつか行ってはどうか。

MB-A3004 及び BC-A6N01 の完全焼なまし処理材における常温での正規確率分布を確認した。

なお、正規確率分布の適合性については、次の χ 二乗検定により確認した。

- (1) 検定統計量である x²は、ヒストグラムにおいて理論分布と試験データの差に対応する量である
- (2) 検定用仮説「0.2%耐力の母集団は正規分布に従う」及び「引張強さの母集団は正規分布に従う」を有意水準5%で検定する
- (3) X 二乗検定においては、試験データを階級区分布し、計算された X²が、ヒストグラムの階級数と有意水準で定まる判断用 X²(a)よりも大き い場合、仮説を棄却する

表 1 MB·A3004 の $_{\rm X}$ 二乗検定(評価温度:室温)					
	0.2%耐力	引張強さ			
データ数 n	66	66			
検定統計量 X ²	5.4	9.0			
判断用 χ ² (α)	0.5	0.5			
α=0.05	9.0	9.0			
判定 (χ2<χ2(α))	OK	OK			

60 45 40 50 35 30 40 敏²⁵ 10 20 戰 30 15 20 10 10 5 0 0 70 75 80 85 90 95 100 154 159 164 169 174 179 184 0.2%耐力(MPa) 引張強さ(MPa) ── データ頻度 ---- 理論分布 ── データ頻度 →→ 理論分布

図1 MB-A3004 での正規分布確認結果

	0.2%耐力	引張強さ
データ数 n	28	28
検定統計量 X ²	6.4	1.3
判断用 X ² (α) α=0.05	9.5	9.5
判定 (X ² <x<sup>2(a))</x<sup>	ОК	OK

表 2 BC-A6N01のX二乗検定(評価温度:室温)

図2 BC-A6N01 での正規分布確認結果
No.	コメント等
24	Unknown"な部分が多く、損傷時のひずみ速度も不明であることから、引張強さに関する許容引張応力 S 値の係数について、1/3.5 に加えて 1/4 を併記してはどうか。

許容応力 S値は、本文に記載の通り、下の表に従って各温度で求められる数値のうち、最も小さな値を超えない整数を許容引張応力(S値)としている。

引引	長強さ	降伯	犬点	クリープ破断強さ	クリープ 速度
$\frac{1}{3.5}S_T$	$\frac{1}{3.5}S_T\overline{R}_T$	$\frac{2}{3}S_{y0}$	$\frac{2}{3}S_{yo}\overline{R}_{Y}$	$F_{avg}S_{R\min}$	1.0 <i>Sc</i>

本確性委員会では、審議の過程で上記の引張強さの係数を $\frac{1}{3.5}$ ではなく保守的な評価として $\frac{1}{4}$ とする意見もあったが、バスケットは溶接構造ではないことなどから従来通り係数を $\frac{1}{3.5}$ とすることが妥当であると判断した。なお、参考として係数 $\frac{1}{4}$ を用いた場合の計算結果を表1と表2に、係数 $\frac{1}{3.5}$ 及び係数 $\frac{1}{4}$ での算出結果の比較を表3に示す。

温	度(℃)	20	75	100	125	150	175	200	225	250	275	300	325	350
	完全焼なまし	155.6	-	-	-	-	-	-	-	-	-	-	-	-
(1) S_T (MPa)	250°C×10000hr	155.1	-	-	-	-	-	-	-	-	-	-	-	-
	300°C×10000hr	152.8	-	-	-	-	-	-	-	-	-	-	-	-
$(2)S_{T,MIN}$ (MPa)	3種の最小値	152.8	-	-	-	-	-	-	-	-	-	-	-	-
	完全焼なまし	1.0	0.88	0.82	0.76	0.69	0.62	0.56	0.50	0.45	0.41	0.38	0.35	0.31
$(3)R_T$	250°C×10000hr	1.0	0.89	0.83	0.77	0.70	0.63	0.56	0.50	0.44	0.39	0.36	0.32	0.28
	300°C×10000hr	1.0	0.89	0.84	0.78	0.71	0.63	0.56	0.49	0.44	0.40	0.36	0.33	0.29
(4) $R_{T, MIN}$ (MPa)	(3)の最小値(*)	1.0	0.88	0.82	0.76	0.69	0.62	0.56	0.49	0.44	0.39	0.36	0.32	0.28
$(5)1/3 \times S_{T, MIN}$ (MP	Pa)	50.9	-	-	-	-	-	-	-	-	-	-	-	-
(6)1/3× $S_{T, MIN}$ × $R_{T, M}$	m (MPa)	50.9	44.8	41.9	38.7	35.2	31.8	28.5	25.2	22.3	20.1	18.1	16.3	14.3
	完全焼なまし	76.3	-	-	-	-	-	-	-	-	-	-	-	-
(7) S_{y0} (MPa)	250°C×10000hr	65.9	-	-	-	-	-	-	-	-	-	-	-	-
	300°C×10000hr	66.8	-	-	-	-	-	-	-	-	-	-	-	-
(8) $S_{y0, MIN}$ (MPa)	(7)の最小値	65.9	-	-	-	-	-	-	-	-	-	-	-	-
	完全焼なまし	1.0	0.92	0.88	0.84	0.79	0.75	0.70	0.66	0.62	0.59	0.55	0.50	0.43
$(9)R_Y$	250° C×10000hr	1.0	0.94	0.94	0.93	0.90	0.85	0.79	0.72	0.66	0.62	0.58	0.53	0.44
	300°C×10000hr	1.0	0.91	0.91	0.89	0.85	0.79	0.72	0.66	0.61	0.57	0.55	0.51	0.41
$(10)R_{Y,MIN}$	(9)の最小値(*)	1.0	0.91	0.88	0.84	0.79	0.75	0.70	0.66	0.61	0.57	0.55	0.50	0.41
$(11)2/3 \times S_{y0, MIN}$ (N	IPa)	43.9	-	-	-	-	-	-	-	-	-	-	-	-
$(12)2/3 \times S_{y0,MIN} \times R_{Y,y}$	_{MIN} (MPa)	43.9	40.1	38.6	36.8	34.8	32.8	30.8	28.9	26.7	25.2	24.0	22.1	18.0
(13)最小值((5), (6), (11)及び(12)の最小値)	43.9	40.1	38.6	36.8	34.8	31.8	28.5	25.2	22.3	20.1	18.1	16.3	14.3
(14) Su (MPa)	$S_{T,MIN}\!$	152	134	125	116	105	95	85	75	66	60	54	48	42
(15) Sy (MPa)	$S_{yOMIN}\!\! imes\!R_Y$	65	60	57	55	52	49	46	43	40	37	35	33	27
(16) Sm (MPa)	(13)を超えない整数	43	40	38	36	34	31	28	25	22	20	18	16	14
$(17)1/4 \times S_{T,MIN}$ (M)	Pa)	38.2	-	-	-	-	-	-	-	-	-	-	-	-
$(18)_{1/4} \times S_{T,MIN} \times R_{T,MIN}$	(MPa)	38.2	33.6	31.4	29.0	26.4	23.8	21.3	18.9	16.7	15.1	13.6	12.2	10.7
$(19)2/3 \times S_{y0,MIN}$ (M	Pa)	43.9	-	-	-	-	-	-	-	-	-	-	-	-
$(20)2/3 \times S_{y0,MIN} \times R_{Y,I}$	MIN (MPa)	43.9	40.1	38.6	36.8	34.8	32.8	30.8	28.9	26.7	25.2	24.0	22.1	18.0
$(21)S_{Rmin}$ (MPa)		-	-	-	-	34.7	28	23.6	20.4	18.1	16.2	14.7	-	-
$(22)F_{avg}$		-	-	-	-	0.67	0.67	0.67	0.67	0.67	0.67	0.67	-	-
$(23)F_{avg} \times S_{Rmin}$ (M)	Pa)	-	-	-	-	23.2	18.8	15.8	13.7	12.1	10.9	9.8	-	-
$(24)1.0 \times S_C$ (MPa)		-	-	-	-	38.2	30.9	26	22.4	19.7	17.5	15.6	-	-
(25)最小值((18),(19),(20),(23)及び(24)の最小値)	38.2	33.6	31.4	29.0	23.2	18.8	15.8	13.7	12.1	10.9	9.8	-	-
S (MPa)	(25)を超えない整数	38	33	31	29	23	18	15	13	12	10	9	-	-

表 1	BC-A6N01の設計降伏占 S	設計引張強さら	許容応力強さ S	許容引張広力 Sの決定(S値管	第出の際の引張強さの係数を	1/4 にした場合の参考値)
11 1	DU AUNUI VI 时年八点 OK			町台7月底心月100000000000000000000000000000000000	*山の际の方的的国での所刻で	14にしに物口の多与胆/

(*)低温側の値を超えない値とする。

無断複製・転載禁止

温	度(℃)	20	75	100	125	150	175	200	225	250	275	300	325	350
	完全焼なまし	159.1	-	-	-	-	-	-	-	-	-	-	-	-
(1) S_T (MPa)	250°C×10000hr	172.0	-	-	-	-	-	-	-	-	-	-	-	-
	300°C×10000hr	176.4	-	-	-	-	-	-	-	-	-	-	-	-
$(2)S_{T,MIN}$ (MPa)	3種の最小値	159.1	-	-	-	-	-	-	-	-	-	-	-	-
	完全焼なまし	1.0	0.97	0.99	0.98	0.93	0.84	0.73	0.61	0.50	0.41	0.36	0.31	0.26
$(3)R_T$	250°C×10000hr	1.0	0.96	0.95	0.92	0.85	0.76	0.66	0.55	0.46	0.39	0.35	0.30	0.24
	300°C×10000hr	1.0	0.92	0.95	0.95	0.91	0.81	0.69	0.56	0.45	0.37	0.32	0.29	0.23
$(4)R_{T,MIN}$	(3)の最小値(*)	1.0	0.92	0.92	0.92	0.85	0.76	0.66	0.55	0.45	0.37	0.32	0.29	0.23
$(5)1/3 \times S_{T, MIN}$ (MP	a)	53.0	-	-	-	-	-	-	-	-	-	-	-	-
$(6)1/3S_{T, MIN} \times R_{T, MIN}$	v (MPa)	53.0	48.9	48.9	48.7	45.2	40.4	34.8	29.3	23.9	19.6	17.2	15.5	12.1
	完全焼なまし	74.4	-	-	-	-	-	-	-	-	-	-	-	-
(7) S_{y0} (MPa)	250° C×10000hr	75.8	-	-	-	-	-	-	-	-	-	-	-	-
	300°C×10000hr	73.6	-	-	-	-	-	-	-	-	-	-	-	-
(8) $S_{y0, MIN}$ (MPa)	(7)の最小値	73.6	-	-	-	-	-	-	-	-	-	-	-	-
	完全焼なまし	1.0	1.04	1.05	1.04	1.02	0.98	0.92	0.83	0.73	0.61	0.49	0.39	0.33
$(9)R_Y$	250°C×10000hr	1.0	0.97	0.99	1.01	1.00	0.97	0.92	0.84	0.74	0.63	0.53	0.43	0.35
	300°C×10000hr	1.0	0.99	1.01	1.02	1.02	0.99	0.94	0.86	0.75	0.63	0.51	0.41	0.35
$\begin{array}{l} (10) R_{Y, MIN} \\ (\text{MPa}) \end{array}$	(9)の最小値(*)	1.0	0.97	0.97	0.97	0.97	0.97	0.92	0.83	0.73	0.61	0.49	0.39	0.33
$(11)2/3 \times S_{y0, MIN}$ (M	IPa)	49.0	-	-	-	-	-	-	-	-	-	-	-	-
$(12)2/3 \times S_{y0,MIN} \times R_{Y,I}$	MIN (MPa)	49.0	47.8	47.8	47.8	47.8	47.7	44.9	40.9	35.7	30.0	24.2	19.2	16.4
(13)最小值((5), (6), (11)及び(12)の最小値)	49.0	47.8	47.8	47.8	45.2	40.4	34.8	29.3	23.9	19.6	17.2	15.5	12.1
Su (MPa)	$S_{T,MIN} \!$	159	146	146	146	135	121	104	87	71	58	51	46	36
Sy (MPa)	$S_{yOMIN}\!$	73	71	71	71	71	71	67	61	53	44	36	28	24
Sm (MPa)	(13)を超えない整数	49	47	47	47	45	40	34	29	23	19	17	15	12
$(17)1/4 \times S_{T,MIN}$ (M)	Pa)	39.8	-	-	-	-	-	-	-	-	-	-	-	-
$(18)_{1/4} \times S_{T,MIN} \times R_{T,MIN}$	(MPa)	39.8	36.7	36.7	36.5	33.9	30.3	26.1	22.0	17.9	14.7	12.9	11.6	9.1
$(19)2/3S_{y0,MIN}$ (MP	ea)	49.0	-	-	-	-	-	-	-	-	-	-	-	-
$(20)2/3S_{y0,MIN} \times R_{Y,MI}$	_{IN} (MPa)	49.0	47.8	47.8	47.8	47.8	47.7	44.9	40.9	35.7	30.0	24.2	19.2	16.4
$(21)S_{Rmin}$ (MPa)		-	-	-	-	41.2	31.3	23.7	17.8	13.4	10	7.4	5.5	4.1
$(22)F_{avg}$		-	-	-	-	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
$(23)F_{avg} \times S_{Rmin}$ (M)	Pa)	-	-	-	-	27.6	21.0	15.9	11.9	9.0	6.7	5.0	3.7	2.7
$(24)1.0S_C$ (MIPa)		-	-	-	-	40.7	31.1	23.7	18	13.6	10.3	7.7	5.8	4.3
(25)取小胆((18),(19),(20),(23)及い(24)の菆小値)	39.8	36.7	36.7	36.5	27.6	21.0	15.9	11.9	9.0	6.7	5.0	3.7	2.7
S (MPa)	(25)を超えない整数	39	36	36	36	27	21	15	11	9	6	5	3	2

表2 MB-A3004の設計降伏点 S_y、設計引張強さ S_u、許容応力強さ S_m、許容引張応力 Sの決定(S値算出の際の引張強さの係数を 1/4 にした場合の参考値)

無断複製・転載禁止

係数	温度(℃)	20	75	100	125	150	175	200	225	250	275	300	325	350
BC-ACN01	$\frac{1}{3.5}$	43	38	35	30	23	18	15	13	12	10	9	-	-
BCAGNUI	$\frac{1}{4}$	38	33	31	29	23	18	15	13	12	10	9	-	-
MD-42004	$\frac{1}{3.5}$	45	41	41	36	27	21	15	11	9	6	5	3	2
MB-A3004	$\frac{1}{4}$	39	36	36	36	27	21	15	11	9	6	5	3	2

表3 係数変化に伴う **S** (MPa)への影響比較

No.	コメント等
2 5	図 75 は最適のフィッティングなのか。高応力側と低応力側がフィットしていないように見えるので確認すること[資料 3-3-3, 6-87 ページ]。

クリープ試験のデータの最新状況を反映させ、フィッティングを実施して適正化した。図1に示すように近似線が高LMPでデータより下方寄り、 低LMPで上方寄りであった傾向は図2のように改善された。これを報告書へ反映した。

最終データによる整理結果

Larson-Miller パラメータによる整理結果

No.	コ メ ン ト 等	
2 6	本確性試験では熱処理が重要なファクターなので、報告書の熱処理に該当する箇所に、長時間熱時効を行う理由を追記すること。	

長時間時効の条件決定には、以下の条件を全て満足するように決定するものとした。

- イ) キャスクのバスケットの使用温度において想定される相変態や析出物成長が生じる温度域であること。
- ロ) キャスクのバスケットの使用温度よりも高温で、相変態や析出物成長を加速する条件であること、さらに時効に伴う機械的性質の変化量が減少する ことが確認でき、その変化量がほぼゼロとみなせるまでの長時間であること。
- ハ) キャスクのバスケットの使用温度で生じるよりも顕著な再結晶が進行して、結晶粒組織が著しく変化しないこと。

BC-A6N01とMB-A3004それぞれの相平衡挙動を考慮して上記の条件が満足されるように長時間時効の温度を以下に述べるように決定した。長時間時効の時間については、

ロ)が満足されるまで継続することとした。

BC-A6N01とMB-A3004それぞれについて上記条件を文献データ等に基づき検討した結果は報告書本文 3.1.2に記載した。

No.	コメント等
27	評価のベースとなる「異常粒成長のない組織」や「熱間押出し組織」等が分かるようにすること。

BC-A6N01 押出材の EBSD による結晶粒(結晶方位分布)観察像の例を図 1 に示す。図 2 には 300℃で 20000hr 長時間時効した BC-A6N01 の EBSD による 方位分布図を示す。結晶粒は方位差 5°と 15°の両方で識別することとした。表 1 にこれらから算出した平均結晶粒径を示す。初期材と長時間時効材(300℃ ×20000hr)の平均結晶粒径には有意差がないことが判明した。

図 2 BC-A6N01の長時間時効材(300℃×20000hr)の EBSD による結晶配向調査 (方位分布図以外では色は方位を示しておらず、異なる結晶粒と識別した領域が 同色とならないように決めている。)

	結晶粒径(平均円相当直径) (µm)									
供試材		方位差 5°		方位差 15°						
	視野1	視野 2	平均	視野1	視野 2	平均				
BC-A6N01 初期材	3.8	4.0	3.9	4.4	4.7	4.6				
BC-A6N01 長時間時効材 (300℃×20000hr)	3.7	3.8	3.8	4.7	4.7	4.7				

表1 EBSD による結晶粒径測定結果